【題目】已知點和動點,以線段為直徑的圓內(nèi)切于圓.

(1)求動點的軌跡方程;

(2)已知點, ,經(jīng)過點的直線與動點的軌跡交于, 兩點,求證:直線與直線的斜率之和為定值.

【答案】(1);(2)見解析.

【解析】試題分析:

1設(shè)以線段為直徑的圓的圓心為,取,借助幾何知識分析可得動點的軌跡是以為焦點,長軸長為4的橢圓,根據(jù)待定系數(shù)法可得動點的軌跡方程為.(2)①當(dāng)直線垂直于軸時,不合題意;②當(dāng)直線的斜率存在時,設(shè)直線的方程為,與橢圓方程聯(lián)立消元后可得二次方程,根據(jù)二次方程根與系數(shù)的關(guān)系及斜率公式可得,為定值.

試題解析:

(1)如圖,設(shè)以線段為直徑的圓的圓心為,取.

依題意,圓內(nèi)切于圓,設(shè)切點為,則, , 三點共線,

的中點, 中點,

.

∴動點的軌跡是以為焦點,長軸長為4的橢圓,

設(shè)其方程為,

,

,

,

動點的軌跡方程為.

2①當(dāng)直線垂直于軸時,直線的方程為,此時直線與橢圓相切,與題意不符.

②當(dāng)直線的斜率存在時,設(shè)直線的方程為.

消去y整理得.

∵直線與橢圓交于, 兩點,

,

解得

設(shè),

,

(定值)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P-A BC的四個頂點都在球D的表面上,PA平面ABC,ABBC,PA =3,AB=BC=2,則球O的表面積為

A13π B17π C52π D68π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知橢圓C:的左右焦點分別為,直線l:與橢圓C交于A,B兩點為坐標(biāo)原點.

若直線l過點,且,求直線l的方程;

若以AB為直徑的圓過點O,點P是線段AB上的點,滿足,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f1(x)=Asin(ωxφ)(A>0,ω>0,|φ|<)的一段圖象過點(0,1),如圖所示.

(1)求函數(shù)f1(x)的表達(dá)式;

(2)將函數(shù)yf1(x)的圖象向右平移個單位,得函數(shù)yf2(x)的圖象,求yf2(x)的最大值,并求出此時自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓,橢圓的長軸長為8,離心率為

求橢圓方程;

橢圓內(nèi)接四邊形ABCD的對角線交于原點,且,求四邊形ABCD周長的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,,,分別是,的中點,動點在線段上運(yùn)動時,下列四個結(jié)論中恒成立的為( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的兩個頂點A,B的坐標(biāo)分別為(﹣2,0),(2,0),且AC,BC所在直線的斜率之積等于

(1)求頂點C的軌跡方程;

(2)若斜率為1的直線與頂點C的軌跡交于M,N兩點,且|MN|=,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時期后,集團(tuán)按網(wǎng)絡(luò)點來布置井位進(jìn)行全面勘探. 由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料見如表:

(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計的預(yù)報值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過1、3、5、7號井計算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

(參考公式和計算結(jié)果:

(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若曲線與曲線在它們的某個交點處具有公共切線,求的值;

(Ⅱ)若存在實數(shù)使不等式的解集為,求實數(shù)的取值范圍

(Ⅲ)若方程有三個不同的解,且它們可以構(gòu)成等差數(shù)列,寫出實數(shù)的值(只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案