已知直線l:y=kx+1與圓C:x2+y2-4x-6y+12=0相交于M,N兩點(diǎn),
(1)求k的取值范圍;
(2)若O為坐標(biāo)原點(diǎn),且·=12,求k的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:浙江省嘉興市第一中學(xué)2011-2012學(xué)年高二下學(xué)期摸底試卷數(shù)學(xué)理科試題 題型:044
已知直線l:y=kx+1與圓C:(x-2)2+(y-3)2=1相交于A,B兩點(diǎn).
(Ⅰ)求弦AB的中點(diǎn)M的軌跡方程;
(Ⅱ)若O為坐標(biāo)原點(diǎn),S(k)表示△OAB的面積,f(k)=[S(k)]2+,求f(k)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省杭州市2007年第二次高考科目教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題卷(理科) 題型:044
已知直線l:y=kx+k+1,拋物線C:y2=4x,和定點(diǎn)M(1,1).
(1)當(dāng)直線經(jīng)過拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N是否在拋物線C上
(2)當(dāng)k變化(k¹ 0)且直線l與拋物線C有公共點(diǎn)時(shí),設(shè)點(diǎn)P(a,1)關(guān)于直線l的對(duì)稱點(diǎn)為Q(x0,y0),求x0關(guān)于k的函數(shù)關(guān)系式x0=f(k).并求P與M重合時(shí),x0的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山西省晉中市高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知直線l:y=kx+2(k為常數(shù))過橢圓+=1(a>b>0)的上頂點(diǎn)B和左焦點(diǎn)F,直線l被圓x2+y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d≥,求橢圓離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三下學(xué)期第一次月考理科數(shù)學(xué)試卷 題型:解答題
已知平面上的動(dòng)點(diǎn)P(x,y)及兩定點(diǎn)A(-2,0),B(2,0),直線PA,PB的斜率分別是k1,k2,且k1·k2=-.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)已知直線l:y=kx+m與曲線C交于M,N兩點(diǎn),且直線BM、BN的斜率都存在,并滿足kBM·kBN=-,求證:直線l過原點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com