【題目】已知函數(shù)f(x)=ex﹣ax,(e為自然對數(shù)的底數(shù)). (Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若對任意實數(shù)x恒有f(x)≥0,求實數(shù)a的取值范圍.
【答案】解:(Ⅰ)f(x)=ex﹣ax,f′(x)=ex﹣a, 當(dāng)a≤0時,f′(x)>0,則f(x)在R上單調(diào)遞增;
當(dāng)a>0時,令f′(x)=ex﹣a=0,得x=lna,
則在(﹣∞,lna]上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增;
(Ⅱ)由f(x)=ex﹣ax,f'(x)=ex﹣a,
若a<0,則f'(x)>0,函數(shù)f(x)單調(diào)遞增,
當(dāng)x趨近于負(fù)無窮大時,f(x)趨近于負(fù)無窮大;
當(dāng)x趨近于正無窮大時,f(x)趨近于正無窮大,
故a<0不滿足條件.
若a=0,f(x)=ex≥0恒成立,滿足條件.
若a>0,由f'(x)=0,得x=lna,
當(dāng)x<lna時,f'(x)<0;當(dāng)x>lna時,f'(x)>0,
所以函數(shù)f(x)在(﹣∞,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增,
所以函數(shù)f(x)在x=lna處取得極小值f(lna)=elna﹣alna=a﹣alna,
由f(lna)≥0得a﹣alna≥0,
解得0<a≤e.
綜上,滿足f(x)≥0恒成立時實數(shù)a的取值范圍是[0,e]
【解析】(Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論a得到范圍,求出函數(shù)的單調(diào)區(qū)間即可;(Ⅱ)由f(x)=ex﹣ax﹣a,f'(x)=ex﹣a,從而化恒成立問題為最值問題,討論求實數(shù)a的取值范圍.
【考點精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一圓心角為 ,半徑為12cm的扇形鐵皮(如圖).P,Q是弧AB上的動點且劣弧 的長為2πcm,過P,Q分別作與OA,OB平行或垂直的線,從扇形上裁剪出多邊形OHPRQT,將該多邊形面積表示為角α的函數(shù),并求出其最大面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=1+x﹣ + ﹣ +…+ ;g(x)=1﹣x+ ﹣ + ﹣…﹣ ;設(shè)函數(shù)F(x)=[f(x+3)]2015[g(x﹣4)]2016 , 且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b﹣a的最小值為( )
A.8
B.9
C.10
D.11
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的函數(shù),滿足f(x)=f(4﹣x),且對任意x1 , x2∈(0,+∞),都有(x1﹣x2)[f(x1+2)﹣f(x2+2)]>0,則滿足f(2﹣x)=f( )的所有x的和為( )
A.﹣3
B.﹣5
C.﹣8
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某校高一年級1000名學(xué)生中隨機(jī)抽取100名測量身高,測量后發(fā)現(xiàn)被抽取的學(xué)生身高全部介于155厘米到195厘米之間,將測量結(jié)果分為八組:第一組[155,160),第二組[160,165),…,第八組[190,195),得到頻率分布直方圖如圖所示. (Ⅰ)計算第三組的樣本數(shù);并估計該校高一年級1000名學(xué)生中身高在170厘米以下的人數(shù);
(Ⅱ)估計被隨機(jī)抽取的這100名學(xué)生身高的中位數(shù)、平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一個容量為100的樣本,其頻率分布直方圖如圖所示,已知樣本數(shù)據(jù)落在區(qū)間[10,12)內(nèi)的頻數(shù)比樣本數(shù)據(jù)落在區(qū)間[8,10)內(nèi)的頻數(shù)少12,則實數(shù)m的值等于( )
A.0.10
B.0.11
C.0.12
D.0.13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸交于點D,且有|FA|=|FD|,當(dāng)點A的橫坐標(biāo)為3時,△ADF為正三角形
(1)求C的方程
(2)延長AF交拋物線于點E,過點E作拋物線的切線l1 , 求證:l1∥l.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面.
(1)求證: 平面;
(2)若為線段的中點,且過三點平面與線段交于點,確定的位置,說明理由;
并求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體OABCD,AB=CD=2,AD=BC= ,AC=BD= ,且OA,OB,OC兩兩垂直,則下列說法正確的是( )
A.直線OB∥平面ACD
B.球面經(jīng)過點A,B,C,D四點的球的直徑是
C.直線AD與OB所成角是45°
D.二面角A﹣OC﹣D等于30°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com