【題目】在△ABC中,角A,B,C的對邊分別為a,bc,若cb=2bcosA

(1)求證:A=2B

(2)若cosB,c=5,求△ABC的面積.

【答案】(1)見解析;(2)

【解析】試題分析:1)利用正弦定理將邊化為角可得,結(jié)合以及兩角和與差的正弦可得,由角的范圍可得;(2先求出,由二倍角公式求出 ,由正弦定理求出,進(jìn)而求得△ABC的面積.

試題解析:1)由cb2bcosA及正弦定理可得, ,(*,即,所以,整理得,即A,B是△ABC的內(nèi)角,所以 ,所以(舍去),即A2B

2)由cosB可知, ,A2B可知, , 由(*)可得, ,ABC中,由正弦定理可得, ,解得,所以△ABC的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),圓C

(1)過點(diǎn)向圓C引切線l,求切線l的方程;

(2)過點(diǎn)A作直線 交圓C于P,Q,且,求直線的斜率k;

(3)定點(diǎn)M,N在直線 上,對于圓C上任意一點(diǎn)R都滿足,試求M,N兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級共有1000名學(xué)生,其中男生400名,女生600名,該校組織了一次口語模擬考試(滿分為100分).為研究這次口語考試成績?yōu)楦叻郑?0分以上(含80分)為高分)是否與性別有關(guān),現(xiàn)按性別采用分層抽樣的方法抽取100名學(xué)生的成績,按從低到高分成七組,并繪制成如圖所示的頻率分布直方圖.已知區(qū)間上的頻率等于區(qū)間上頻率,區(qū)間上的頻率與區(qū)間上的頻率之比為

0.010

0.050

0.025

0.010

0.001

6.635

3.841

5.024

6.635

10.828

(1)估計該校高一年級學(xué)生在口語考試中,成績?yōu)楦叻值娜藬?shù);

(2)請你根據(jù)已知條件將下列列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“該校高一年級學(xué)生在本次考試中口語成績及格(60分以上(含60分)為及格)與性別有關(guān)”.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:
(1函數(shù)f(x)=loga(2x﹣1)﹣1的圖象過定點(diǎn)(1,0);
(2化簡2 +lg5lg2+(lg2)2﹣lg2的結(jié)果為25;
(3若loga <1,則a的取值范圍是(1,+∞);
(4若2x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),則x+y<0.
其中所有正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|a﹣3<x<a+3},B={x|x2﹣2x﹣3>0}.
(1)若a=3,求A∩B,A∪B;
(2)若A∪B=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+θ)( A>0,ω>0,|θ|< )的最小正周期為π,且圖象上有一個最低點(diǎn)為M( ,﹣3).
(1)求f(x)的解析式;
(2)求函數(shù)f(x)在[0,π]的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y= +lg(2﹣x)的定義域是集合M,集合N={x|x(x﹣3)<0}
(1)求M∪N;
(2)求(RM)∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)上的一點(diǎn)M的橫坐標(biāo)為3,焦點(diǎn)為F,且|MF|=4.直線l:y=2x﹣4與拋物線C交于A,B兩點(diǎn).
(Ⅰ)求拋物線C的方程;
(Ⅱ)若P是x軸上一點(diǎn),且△PAB的面積等于9,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(2+x)+lg(2﹣x).

(1)求函數(shù)f(x)的定義域并判斷函數(shù)f(x)的奇偶性;

(2)記函數(shù)g(x)= +3x,求函數(shù)g(x)的值域;

(3)若不等式 f(x)m有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案