分析 (Ⅰ)設(shè)出$\overrightarrow{c}$的坐標(biāo),根據(jù)題意列出方程組,求出解即可;
(Ⅱ)根據(jù)平面向量的坐標(biāo)運(yùn)算與數(shù)量積運(yùn)算,求出模長即可.
解答 解:(Ⅰ)設(shè)$\overrightarrow{c}$=(x,y),
∵$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-1,2),且$\overrightarrow{a}$$•\overrightarrow{c}$=$\overrightarrow$$•\overrightarrow{c}$>0,|$\overrightarrow{c}$|=3.
∴$\left\{\begin{array}{l}{3x+2y=-x+2y}\\{\sqrt{{x}^{2}{+y}^{2}}=3}\\{3x+2y>0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$,
∴向量$\overrightarrow{c}$的坐標(biāo)為$\overrightarrow{c}$=(0,3);
(Ⅱ)∵$\overrightarrow{c}$=(0,3),
∴3$\overrightarrow{a}$-$\overrightarrow{c}$=3(3,2)-(0,3)=(9,3);
∴|3$\overrightarrow{a}$-$\overrightarrow{c}$|=$\sqrt{{9}^{2}{+3}^{2}}$=3$\sqrt{10}$.
點評 本題考查了平面向量的坐標(biāo)運(yùn)算與數(shù)量積運(yùn)算以及模長公式的應(yīng)用問題,是基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,2} | B. | {-1,0} | C. | {0,1} | D. | {1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2-2x-1≥0 | B. | ?x∈R,x2-2x-1<0 | C. | ?x∈R,x2-2x-1<0 | D. | ?x∈R,x2-2x-1≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{EB}$ | B. | $\overrightarrow{BE}$ | C. | $\overrightarrow{AD}$ | D. | $\overrightarrow{CF}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 點M在圓C外,點N在圓C外 | B. | 點M在圓C內(nèi),點N在圓C外 | ||
C. | 點M在圓C外,點N在圓C內(nèi) | D. | 點M在圓C內(nèi),點N在圓C內(nèi) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,1) | B. | (-1,3) | C. | (-∞,-3)∪(1,+∞) | D. | (-∞,-1)∪(3,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com