從正方體六個(gè)面的對(duì)角線中任取兩條作為一對(duì),其中所成的角為60°的共有

[  ]

A.

24對(duì)

B.

30對(duì)

C.

48對(duì)

D.

60對(duì)

答案:C
解析:

此題考察組合知識(shí)及其運(yùn)用、考察空間直線位置關(guān)系的知識(shí),考察對(duì)空間圖形的認(rèn)識(shí)能力.考察分類討論的意識(shí)與補(bǔ)集思想的運(yùn)用.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:人教版(大綱版) 高中數(shù)學(xué) 題型:

已知命題p:x∈R,x2-a≥0,命題q:x∈R,x2+2ax+2-a=0,命題“p或q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:蘇教版(新課標(biāo)) 必修2 題型:

在直三棱柱ABC-A1B1C1中,AB=AC=2,AB⊥AC,D為BB1的中點(diǎn).二面角B-A1C1-D的大小為α,試建立適當(dāng)?shù)目臻g直角坐標(biāo)系,用向量法分別解答以下問(wèn)題:

(Ⅰ)當(dāng)AA1=2時(shí),求:

(ⅰ)所成角φ的余弦值

(ⅱ)C1D與平面A1BC1所成角的正弦值

(Ⅱ)當(dāng)棱柱的高變化時(shí),求cosα的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:人教A版(新課標(biāo)) 選修3-4 對(duì)稱與群 題型:

觀察下圖中各正方形圖案,每條邊上有n(n≥2)個(gè)圓圈,每個(gè)圖案中圓圈的總數(shù)是Sn,按此規(guī)律推出:當(dāng)n≥2時(shí),Sn與n的關(guān)系式________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是

[  ]

A.

34

B.

55

C.

78

D.

89

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

設(shè)a≠0,n是大于1的自然數(shù),(1+)n的展開式為a0+a1x+a2x2+…+anxn.若點(diǎn)Ai(i,ai)(i=0,1,2)的位置如圖所示,則a=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

如圖,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD.四邊形ABCD為梯形,AD∥BC,且AD=2BC.過(guò)A1,C,D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為Q.

(1)證明:Q為BB1的中點(diǎn);

(2)求此四棱柱被平面α所分成上下兩部分的體積之比;

(3)若A1A=4,CD=2,梯形ABCD的面積為6,求平面α與底面ABCD所成二面角大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

直線l1l2是圓x2+y2=2的兩條切線,若l1l2的交點(diǎn)為(1,3),則l1l2的交角的正切值等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

若f(x)=ln(e3x+1)+ax是偶函數(shù),則a=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案