設(shè)F1,F(xiàn)2是橢圓數(shù)學(xué)公式的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且丨PF1丨:丨PF2丨=2:1,則△PF1F2的面積為


  1. A.
    4
  2. B.
    6
  3. C.
    2數(shù)學(xué)公式
  4. D.
    4數(shù)學(xué)公式
A
分析:依題意可設(shè)丨PF2丨=x,則丨PF1丨=2x,利用橢圓的定義與其標(biāo)準(zhǔn)方程可求得x的值,從而可知丨PF1丨與丨PF2丨,并能判斷△PF1F2的形狀,從而可求得△PF1F2的面積.
解答:設(shè)丨PF2丨=x,則丨PF1丨=2x,依題意,丨PF1丨+丨PF2丨=x+2x=3x=2a=6,
∴x=2,2x=4,
即丨PF2丨=2,丨PF1丨=4,又|F1F2丨=2=2
+=,
∴△PF1F2為直角三角形,
∴△PF1F2的面積為S=丨PF1丨丨PF2丨=×2×4=4.
故選A.
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),考查橢圓的定義與其標(biāo)準(zhǔn)方程,判斷△PF1F2為直角三角形是關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),F(xiàn)1F2=8,P是橢圓上的點(diǎn),PF1+PF2=10,且PF1⊥PF2,則點(diǎn)P的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且P到兩個(gè)焦點(diǎn)的距離之差為2,則△PF1F2是( 。

A.鈍角三角形                                   B.銳角三角形

C.斜三角形                                D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題20分,第1小題滿分4分,第2小題滿分6分,第3小題6分,第4小題4分)

         我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問題。

   (1)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線的距離分別為d1、d2,試求d1·d2的值,并判斷直線L與橢圓M的位置關(guān)系。

   (2)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線        m、n不同時(shí)為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1·d2的值。

   (3)試寫出一個(gè)能判斷直線與橢圓的位置關(guān)系的充要條件,并證明。

   (4)將(3)中得出的結(jié)論類比到其它曲線,請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),以F1為圓心,且過橢圓中心的圓與橢圓的一個(gè)交點(diǎn)為M,若直線F2M與圓F1相切,則該橢圓的離心率是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省第13次月考) 題型:選擇題

設(shè)F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且

 

的面積為(   )

A.4                           B.6                          C.                     D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案