已知三棱柱的側(cè)棱長和底面邊長均為2,在底面ABC內(nèi)的射影O為底面△ABC的中心,如圖所示:
(1)聯(lián)結(jié),求異面直線與所成角的大;
(2)聯(lián)結(jié)、,求四棱錐的體積.
(1);(2).
解析試題分析:(1)要求異面直線所成的角,必須按照定義作出這個角,即把異面直線平移為相交直線,求相交直線所夾的銳角或直角,當(dāng)然我們一般是過異面直線中的某一條上一點作另一條直線的平行線,同時要借助已知圖形中的平行關(guān)系尋找平行線,以方便解題.本題是三棱柱,顯然有∥,因此只要在中求即可;(2)求四棱錐的體積,一般用公式,即底面面積乘以高再除以3,但本題中由于四棱錐的高不容易找,而這個棱錐在三棱柱中,因此我們可借助三棱柱來求棱錐的體積,利用棱錐體積的公式,可知三棱錐的體積是三棱柱體積的三分之一,因此所求四棱錐的體積正好是三棱柱的體積的三分之二,我們求出三棱柱的即可.
試題解析:(1) 聯(lián)結(jié),并延長與交于點,則是邊上的中線.
點是正的中心,且平面,
∴且.∴.
∴.
又,
∴異面直線與所成的角為.
∴即四邊形為正方形.
∴異面直線與所成角的大小為.
(2)∵三棱柱的所有棱長都為2,
∴可求算得.
∴,
∴.
考點:(1)異面直線所成的角;(2)切割法與棱錐的體積.
科目:高中數(shù)學(xué) 來源: 題型:解答題
定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線就和兩平面的交線平行.
請對上面定理加以證明,并說出定理的名稱及作用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三棱柱中,平面⊥平面ABC,BC⊥AC,D為AC的中點,AC=BC=AA1=A1C=2。
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B與平面A1BC的夾角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:∥平面;
(2)求證:AC⊥BC1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖四棱錐中,底面是平行四邊形,平面,垂足為,在上且,,,是的中點,四面體的體積為.
(1)求二面角的正切值;
(2)求直線到平面所成角的正弦值;
(3)在棱上是否存在一點,使異面直線與所成的角為,若存在,確定點的位置,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com