如圖,四棱錐的底面是正方形,⊥平面

(1)求證:;
(2)求二面角的大小.

(1)證明見解析;(2)

解析試題分析:(1)要證線線垂直,一般通過證明線面垂直來實現(xiàn),那么我們就要尋找圖形中已有哪些與待證線垂直的直線,本題中首先由已知有,又有平面,則,故可證明與過的平面垂直,從而得線線垂直;(2)要求二面角的大小,一般須根據定義作出二面角的平面角,在三角形中解出,而平面角就是要與二面角的棱垂直的直線(射線),題中棱是,在兩個面(半平面)內與垂直的直線是哪個呢?注意到已知,因此有,從而都是以為底邊的等腰三角形,故垂直關系就是取底邊中點,根據等腰三角形的性質有,就是我們要找的平面角.
試題解析:(1)連接BD,∵⊥平面
平面
∴AC⊥SD         4分
又四邊形ABCD是正方形,∴AC⊥BD
∴AC ⊥平面SBD
∴AC⊥SB.         6分

(2)設的中點為,連接、,
∵SD=AD,CS=CA,
∴DE⊥SA, CE⊥SA.
是二面角的平面角.     9分
計算得:DE=,CE=,CD=2,則CD⊥DE.
,
所以所求二面角的大小為 .   12分
考點:(1)線線垂直;(2)二面角.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知直三棱柱中,,中點,中點.

(1)求三棱柱的體積;
(2)求證:
(3)求證:∥面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的多面體中,

(Ⅰ)求證:;
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知三棱柱的側棱長和底面邊長均為2,在底面ABC內的射影O為底面△ABC的中心,如圖所示:

(1)聯(lián)結,求異面直線所成角的大小;
(2)聯(lián)結、,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱的底面是邊長為的正三角形,側棱垂直于底面,側棱長為,D為棱的中點。

(Ⅰ)求證:平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面是直角梯形,平面,,分別為的中點,.

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是菱形,,且側面平面,點是棱的中點.

(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)若,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在長方體中,,,、 分別為、的中點.

(1)求證:平面
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,長方體中點.

(1)求證:;
(2)在棱上是否存在一點,使得平面?若存在,求的長;若不存在,說明理由;
(3)若二面角的大小為,求的長.

查看答案和解析>>

同步練習冊答案