2.如圖,圓C內(nèi)切于扇形AOB,$∠AOB=\frac{π}{3}$,若向扇形AOB內(nèi)隨機投擲600個點,則落入圓內(nèi)的點的個數(shù)估計值為( 。
A.100B.200C.400D.450

分析 先求出落入圓內(nèi)的點的概率,試驗發(fā)生包含的事件對應(yīng)的包含的事件對應(yīng)的是扇形AOB,滿足條件的事件是圓,根據(jù)題意,構(gòu)造直角三角形求得扇形的半徑與圓的半徑的關(guān)系,進而根據(jù)面積的求法求得扇形OAB的面積與⊙P的面積比,問題得以解決.

解答 解:由題意知本題是一個等可能事件的概率,設(shè)圓C的半徑為r,
試驗發(fā)生包含的事件對應(yīng)的是扇形AOB,
滿足條件的事件是圓,其面積為⊙C的面積=π•r2,
連接OC,延長交扇形于P.
由于CE=r,∠BOP=$\frac{π}{6}$,OC=2r,OP=3r,
則S扇形AOB=$\frac{π(3r)^{2}}{6}$=$\frac{3}{2}$πr2,;
∴⊙C的面積與扇形OAB的面積比是$\frac{2}{3}$,
∴向扇形AOB內(nèi)隨機投擲600個點,則落入圓內(nèi)的點的個數(shù)估計值600×$\frac{2}{3}$=400
故選:C.

點評 本題是一個等可能事件的概率,對于這樣的問題,一般要通過把試驗發(fā)生包含的事件同集合結(jié)合起來,根據(jù)集合對應(yīng)的圖形做出面積,用面積的比值得到結(jié)果.連接圓心和切點是常用的輔助線做法,本題的關(guān)鍵是求得扇形半徑與圓半徑之間的關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.用弧度制表示終邊在坐標軸上的角的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.現(xiàn)有兩個盒子,第1個盒子中裝有5個紅球,3個黑球;第2個盒子中裝有4個紅球,2個黑球.現(xiàn)從這兩個盒子中各取出1個球放在一起,再從中任取1球.求:
(1)這個球是紅球的概率;
(2)若發(fā)現(xiàn)這個球是紅球,從第1個盒子中取出的球是紅球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.經(jīng)過拋物線x2=4y的焦點和雙曲線$\frac{{x}^{2}}{17}$-$\frac{{y}^{2}}{8}$=1的右焦點的直線方程為( 。
A.x+48y-3=0B.x+80y-5=0C.x+3y-3=0D.x+5y-5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知A,B分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右頂點,P是雙曲線C右支上位于第一象限的動點,設(shè)PA,PB的斜率分別為k1,k2,則k1+k2的取值范圍為( 。
A.($\frac{2b}{a}$,+∞)B.($\frac{a}$,+∞)C.[$\frac{a}$,+∞)D.[$\frac{a}$,$\frac{2b}{a}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的一條漸近線為x+$\sqrt{2}$y=0,則離心率e=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的漸近線方程為y=$±\frac{1}{3}x$,則此雙曲線的離心率為( 。
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{{\sqrt{10}}}{3}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知圓C的圓心與雙曲線4x2-$\frac{4}{3}{y^2}$=1的左焦點重合,又直線4x-3y-6=0與圓C相切,則圓C的標準方程為( 。
A.(x-1)2+y2=4B.(x+1)2+y2=2C.(x+1)2+y2=1D.(x+1)2+y2=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知直線y=2x是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線,點A(1,0),M(m,n)(n≠0)都在雙曲線C上,直線AM與y軸相交于點P,設(shè)坐標原點為O.
(1)求雙曲線C的方程,并求出點P的坐標(用m,n表示);
(2)設(shè)點M關(guān)于y軸的對稱點為N,直線AN與y軸相交于點Q,問:在x軸上是否存在定點T,使得TP⊥TQ?若存在,求出點T的坐標;若不存在,請說明理由.
(3)若過點D(0,2)的直線l與雙曲線C交于R,S兩點,且|$\overrightarrow{OR}$+$\overrightarrow{OS}$|=|$\overrightarrow{RS}$|,試求直線l的方程.

查看答案和解析>>

同步練習冊答案