已知橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)
過點(1,  
3
2
)
,且離心率e=
1
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)若P是橢圓C上一點,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,且∠F1PF2=60°,求△F1PF2的面積S.
分析:(I)由橢圓的離心率e=
c
a
=
1
2
可得a=2c,從而可設出橢圓的標準方程,再將點(1,  
3
2
)
的坐標代入可得求得答案.
(II)利用橢圓的定義可得|PF1|+|PF2|=2a,又|F1F2|=2c,∠F1PF2=60°,利用余弦定理可求得|PF1|•|PF2|,從而可求得△F1PF2的面積.
解答:解:(I)由e=
c
a
=
1
2
,可得a=2ca,因此設橢圓方程為
x2
4c2
+
y2
3c2
=1
,
將點(1,  
3
2
)
的坐標代入可得c2=1,
∴所求方程是:
x2
4
+
y2
3
=1

(II)∵P是橢圓
x2
4
+
y2
3
=1
.上的一點,F(xiàn)1、F2是橢圓的兩個焦點,∠F1PF2=60°,
∴|PF1|+|PF2|=4,|F1F2|=2,
在△F1PF2中,由余弦定理得:
|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos∠F1PF2
=(|PF1|+|PF2|)2-2|PF1|•|PF2|-2|PF1|•|PF2|cos60°
=16-2|PF1|•|PF2|-2|PF1|•|PF2
1
2
=16-3|PF1|•|PF2|=4,
∴|PF1|•|PF2|=4,
∴S△F1PF2=
1
2
|PF1|•|PF2|sin60°=
1
2
×4×
3
2
=
3
點評:本題考查橢圓的簡單性質(zhì)與標準方程,考查待定系數(shù)法,考查余弦定理與三角形的面積,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過點P(1,
3
2
)

(1)求橢圓C的方程;
(2)設F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標原點.
(1)求橢圓C的方程;
(2)設A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經(jīng)過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習冊答案