雙曲線(  )

A.              B.             C.                D.

 

【答案】

B

【解析】由于對稱性,我們不妨取頂點,取漸近線為,所以由點到直線的距離公式可得,亦可根據(jù)漸近線傾斜角為450得到.

【考點定位】 本題考查了雙曲線的漸近線及點到直線的距離公式,如果能畫圖可簡化計算,屬于簡單題.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,則雙曲線
x2
a2
-
y2
(a+1)2
=1
的離心率e的取值范圍是( 。
A、(
2
,2)
B、(
2
,
5
)
C、(2,5)
D、(2,
5
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:x2-
y2
b2
=1(b>0),過點M(1,1)作直線l交雙曲線C于A、B兩點,使得M是線段AB的中點,則實數(shù)b取值范圍為( 。
A、(1,
2
B、(-1,0)∪(0,1)
C、(0,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在原點,以兩條坐標(biāo)軸為對稱軸,離心率是
2
,兩準(zhǔn)線間的距離大于
2
,且雙曲線上動點P到A(2,0)的最近距離為1.
(Ⅰ)求證:該雙曲線的焦點不在y軸上;
(Ⅱ)求雙曲線的方程;
(Ⅲ)如果斜率為k的直線L過點M(0,3),與該雙曲線交于A、B兩點,若
AM
MB
(λ>0)
,試用l表示k2,并求當(dāng)λ∈[
1
2
,2]
時,k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江模擬)定義:過雙曲線焦點的直線與雙曲線交于A、B兩點,則線段AB成為該雙曲線的焦點弦.已知雙曲線
x2
25
-
y2
9
=1,那么過改雙曲線的左焦點,長度為整數(shù)且不超過2012的焦點弦條數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點F1,F(xiàn)2為雙曲線C:x2-
y2
b2
=1(b>0)的左、右焦點,過F2作垂直于x軸的直線,在x軸上方交雙曲線于點M,且∠MF1F2=30°,圓O的方程為x2+y2=b2
(1)求雙曲線C的方程;
(2)過圓O上任意一點Q(x0,y0)作切線l交雙曲線C于A,B兩個不同點,AB中點為M,求證:|AB|=2|OM|;
(3)過雙曲線C上一點P作兩條漸近線的垂線,垂足分別是P1和P2,求
PP1
PP2
的值.

查看答案和解析>>

同步練習(xí)冊答案