【題目】“冰桶挑戰(zhàn)賽”是一項社交網(wǎng)絡(luò)上發(fā)起的慈善公益活動,活動規(guī)定:被邀請者要么在24小時內(nèi)接受挑戰(zhàn),要么選擇為慈善機構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動.若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請另外3個人參與這項活動.假設(shè)每個人接受挑戰(zhàn)和不接受挑戰(zhàn)是等可能的,且互不影響.

(1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中至少有2個人接受挑戰(zhàn)的概率是多少?

(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關(guān),某調(diào)查機構(gòu)進行了隨機抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:

性別 成績

接受挑戰(zhàn)

不接受挑戰(zhàn)

總計

男性

45

15

60

女性

25

15

40

總計

70

30

100

根據(jù)表中數(shù)據(jù),能有有90%的把握認為“冰桶挑戰(zhàn)賽與受邀者的性別有關(guān)”?

附:,其中.

2.706

3.841

6.635

10.828

0.10

0.05

0.010

0.001

【答案】(1)(2)能

【解析】分析:確定基本事件的個數(shù),根據(jù)古典概型的概率公式,求得這個人中至少有個人接受挑戰(zhàn)的概率

根據(jù)列聯(lián)表,得到的觀測值,與臨界值比較,即可得到結(jié)論

詳解:(1)這3個人接受挑戰(zhàn)分別記為,,,則,分別表示這3個人不接受挑戰(zhàn),

這3個人參與該項活動的可能結(jié)果為:,,,,共有8種.

其中,至少有2個人接受挑戰(zhàn)的可能結(jié)果有:,,共有4種,

根據(jù)古典概型的概率公式,所求的概率為.

(2)假設(shè)冰桶挑戰(zhàn)賽與受邀者的性別無關(guān),根據(jù)列聯(lián)表,得到的觀測值為:,

因為

所以在犯錯誤的概率不超過0.1的前提下認為“冰桶挑戰(zhàn)賽與受邀者的性別無關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)當(dāng)k=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng) 時,求函數(shù)f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x∈R,|x|<1時,有如下表達式:1+x+x2+…+xn+…=
兩邊同時積分得: dx+ xdx+ x2dx+…+ xndx+…= dx
從而得到如下等式:1× + ×( 2+ ×( 3+…+ ×( n+1+…=ln2
請根據(jù)以上材料所蘊含的數(shù)學(xué)思想方法,計算:
× + ×( 2+ ×( 3+…+ ×( n+1=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)任何有理數(shù)都是實數(shù);

(2)存在一個實數(shù),能使成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;

(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:①用刻畫回歸效果,當(dāng)越大時,模型的擬合效果越差,反之則越好;②歸納推理是由特殊到一般的推理,而演繹推移則是由一般到特殊的推理;③綜合法證明數(shù)學(xué)問題是“由因索果”,分析法證明數(shù)學(xué)問題是“執(zhí)果索因”;④設(shè)有一個回歸方程,變量增加1個單位時,平均增加5個單位;⑤線性回歸方程必過點.其中錯誤的個數(shù)有( )

A. 0個 B. 1個 C. 2個 D. 3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.

(1)求直線與平面所成角的正弦值;

(2)若點M,N分別在AB,PC上,且平面,試確定點M,N的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0,1表示沒有擊中目標(biāo),2,3,4,5,6,7,8,

9表示擊中目標(biāo),以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):

7527

0293

7140

9857

0347

4373

8636

6947

1417

4698

0371

6233

2616

8045

6011

3661

9597

7424

7610

4281

根據(jù)以上數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=alnx+ + x+1,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習(xí)冊答案