分析 (1)取CE的中點M,連接BM,F(xiàn)M,可證明四邊形ABMF是平行四邊形得出AF∥BM,得出AF∥平面BCE;
(2)證明AC⊥平面ABED,代入棱錐的體積公式計算.
解答 解:(1)取CE的中點M,連接BM,F(xiàn)M,
∵F,M分別是CD,CE的中點,
∴FM∥DE,F(xiàn)M=$\frac{1}{2}$DE,
又AB∥DE,AB=$\frac{1}{2}$DE,
∴AB∥FM,AB=FM,
∴四邊形ABMF是平行四邊形,
∴AF∥BM,又AF?平面BCE,BM?平面BCE,
∴AF∥平面BCE.
(2)∵AB⊥平面ACD,AC?平面ACD,
∴AC⊥AB,
又AC⊥AD,AB?平面ABED,AD?平面ABED,AB∩AD=A,
∴AC⊥平面ABED.
∵AB=2,∴AC=AD=DE=4,
∴VC-ABED=$\frac{1}{3}{S}_{梯形ABED}•AC$=$\frac{1}{3}×$$\frac{1}{2}$×(2+4)×4×4=16.
點評 本題考查了線面平行的判定,棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,0)∪(0,1) | B. | (-∞,-1)∪(1,∞) | C. | (-1,0)∪(1,∞) | D. | (-∞,-1)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | $-\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30種 | B. | 24種 | C. | 18種 | D. | 12種 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com