11.設(shè)全集U={1,2,3,4},M={1,3,4},N={2,4},P={2},那么下列關(guān)系正確的是(  )
A.P=(∁UM)∩NB.P=M∪NC.P=M∩(∁UN)D.P=M∩N

分析 直接由全集U,集合M求出∁UM,然后再求(∁UM)∩N,則答案可得.

解答 解:由全集U={1,2,3,4},M={1,3,4},N={2,4},P={2},
則∁UM={2}.
∴(∁UM)∩N={2}∩{2,4}={2}=P.
故選:A.

點(diǎn)評(píng) 本題考查了交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求y=tan(1-x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)a,b,c,d∈R,a2+b2=c2+d2=1,求abcd的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)f(x)=ax2+bx+2是定義在[1+a,2]上的偶函數(shù),則f(x)的值域是[-10,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}是等差數(shù)列,且a2=3,a5=6,數(shù)列{bn}是等比數(shù)列且公比q=2,S4=15
(1)求通項(xiàng)公式an,bn
(2)設(shè){an}的前n項(xiàng)和為Sn,證明:數(shù)列$\left\{{\frac{S_n}{n}}\right\}$是等差數(shù)列
(3)設(shè)數(shù)列$\left\{{\frac{S_n}{n}•{b_n}}\right\}$的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.自點(diǎn)A(-3,3)發(fā)出的光線l射到x軸上,被x軸反射,反射光線所在的直線與圓C:x2+y2-4x-4y+7=0相切,求光線l和反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知過(guò)點(diǎn)A(-1,0)的動(dòng)直線l與圓C:x2+(y-3)2=4相交于P、Q兩點(diǎn),M是PQ中點(diǎn),l與直線m:x+3y+6=0相交于N.
(1)當(dāng)PQ=2$\sqrt{3}$時(shí),求直線l的方程;
(2)探索$\overrightarrow{AM}$•$\overrightarrow{AN}$是否為定值,若是,請(qǐng)求出其值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=|x+1|+|x-1|.
(Ⅰ)判斷并證明函數(shù)f(x)的奇偶性;
(Ⅱ)作出函數(shù)f(x)的圖象,并求其單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,且$\frac{cosB}{cosC}=-\frac{2a+c}$.
(1)求角B的大;
(2)若b=3,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案