若集合A滿足∅?A⊆{a,b,c,d},求集合A.
考點:子集與真子集
專題:集合
分析:由集合A滿足∅?A⊆{a,b,c,d},可得:A為集合{a,b,c,d}的非空子集,進而可列舉出滿足條件的集合A.
解答: 解:∵集合A滿足∅?A⊆{a,b,c,d},
故A為集合{a,b,c,d}的非空子集,
故A={a},或A=,或A={c},或A=imquqko,
或A={a,b},或A={a,c},或A={a,d},或A={b,c},或A={b,d},或A={c,d},
或A={a,b,c},或A={a,b,d},或A={b,c,d},或A={a,c,d},或A={a,b,c,d}
點評:本題考查的知識點是子集與真子集,其中根據(jù)已知分析出A為集合{a,b,c,d}的非空子集,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=
3
cosx+sinx(x∈R)的圖象向左平移
π
6
個長度單位后,所得到的圖象關(guān)于( 。⿲ΨQ.
A、y軸
B、原點(0,0)
C、直線x=
π
3
D、點(
6
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x
x+2
,數(shù)列an滿足:a1=
4
3
,an+1=f(an).
(1)求證數(shù)列{
1
an
}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)記Sn=a1a2+a2a3+…+anan+1,求證:Sn
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的解析式.
(1)已知二次函數(shù)f(x)滿足f(0)=0,且f(x+1)-f(x)=4x,求f(x)的解析式.
(2)已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=x3+2x+3,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體EFABCD中,底面正方形ABCD的兩條對角線AC與BD相交于點O,且AF⊥平面ABCD,DE∥AF,AB=DE=2,AF=1.
(1)在平面ADEF內(nèi)是否存在一點M,使OM∥平面CDE?若存在,試確定點M的位置,若不存在,請說明理由;
(2)求直線EC與平面BDE所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(0,10)中隨機地取出兩個數(shù)x和y,求兩數(shù)之和小于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)fa(x)=ln(1+ax)-x,(a>0,x>-
1
a
)的最大值可記為g(a)
(Ⅰ)求關(guān)于a的函數(shù)g(a)的解析式;
(Ⅱ)已知t∈N*,當(dāng)a≥t時,g(a)≤2fa(1)+lnt恒成立,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax(a>0,a≠1),數(shù)列{bn}的前n項和Sn滿足f(n)=1+(1-
1
a
)Sn,數(shù)列{cn}有cn=bn•lgbn
(1)求數(shù)列{cn}的前n項和Tn;
(2)若對一切n∈N*都有cn<cn+1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-xln|x|+ax,
(1)若a=1,求f(x)的極值;
(2)當(dāng)x∈[1,+∞),求f(x)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)-
1
2x
有零點,求a的范圍.

查看答案和解析>>

同步練習(xí)冊答案