【題目】大豆,古稱菽,原產(chǎn)中國(guó),在中國(guó)已有五千年栽培歷史。皖北多平原地帶,黃河故道土地肥沃,適宜種植大豆。2018年春,為響應(yīng)中國(guó)大豆參與世界貿(mào)易的競(jìng)爭(zhēng),某市農(nóng)科院積極研究,加大優(yōu)良品種的培育工作。其中一項(xiàng)基礎(chǔ)工作就是研究晝夜溫差大小與大豆發(fā)芽率之間的關(guān)系。為此科研人員分別記錄了5天中每天100粒大豆的發(fā)芽數(shù)得如下數(shù)據(jù)表格:

科研人員確定研究方案是:從5組數(shù)據(jù)中選3組數(shù)據(jù)求線性回歸方程,再用求得的回歸方程對(duì)剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求剩下的2組數(shù)據(jù)恰是不相鄰的2天數(shù)據(jù)的概率;

(2)若選取的是4月5日、6日、7日三天數(shù)據(jù)據(jù)此求關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與實(shí)際數(shù)據(jù)的誤差絕對(duì)值均不超過(guò)1粒,則認(rèn)為得到的線性回歸方程是可靠的,請(qǐng)檢驗(yàn)(Ⅱ)中回歸方程是否可靠?

注: ,.

【答案】(1);(2);(3)得到的線性回歸方程是可靠的

【解析】分析:(1)利用對(duì)立事件的概率公式求恰好是不相鄰的2天數(shù)據(jù)的概率.(2)利用最小二乘法求y關(guān)于的線性回歸方程為.(3)檢驗(yàn)即可得解.

詳解:(1)恰好是不相鄰的2天數(shù)據(jù)的概率是.

(2)由數(shù)據(jù)得

,, ;

,

;

;

故y關(guān)于的線性回歸方程為.

(3)當(dāng)時(shí), ;

當(dāng)時(shí), ,,

故得到的線性回歸方程是可靠的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,求的單調(diào)區(qū)間;

(2)證明:只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】個(gè)相同的小球放到三個(gè)編號(hào)為的盒子中,且每個(gè)盒子內(nèi)的小球數(shù)要多于盒子的編號(hào)數(shù),則共有多少種放法( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓Cx2+y24y+10,點(diǎn)M(﹣1,﹣1),從圓C外一點(diǎn)P向該圓引一條切線,記切點(diǎn)為T

1)若過(guò)點(diǎn)M的直線l與圓交于A,B兩點(diǎn)且|AB|2,求直線l的方程;

2)若滿足|PT||PM|,求使|PT|取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐SABCD中,MSB的中點(diǎn),ABCDBCCD,且ABBC2CDSD1,又SD⊥面SAB

1)證明:CDSD;

2)證明:CM∥面SAD

3)求四棱錐SABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人進(jìn)行象棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.

1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;

2)用X表示比賽決出勝負(fù)時(shí)的總局?jǐn)?shù),求隨機(jī)變量X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)到直線的距離的最大值;

(2)若曲線上所有的點(diǎn)均在直線的右下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016·貴陽(yáng)第二次聯(lián)考)在△ABC中,角A,B,C的對(duì)邊分別為ab,c,向量m=(ab,sin A-sin C),向量n=(c,sin A-sin B),且mn.

(1)求角B的大;

(2)設(shè)BC的中點(diǎn)為D,且AD,求a+2c的最大值及此時(shí)△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)是, ,且橢圓經(jīng)過(guò)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過(guò)左焦點(diǎn)且傾斜角為45°的直線與橢圓交于兩點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案