從5名學(xué)生中選出4名分別參加A,B,C,D四科競(jìng)賽,其中甲不能參加A,B兩科競(jìng)賽,則不同的參賽方案種數(shù)為( 。
A、24B、48C、72D、120
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:本題可以先從5人中選出4人,分為有甲參加和無(wú)甲參加兩種情況,再將甲安排參加C、D科目,然后安排其它學(xué)生,通過(guò)乘法原理,得到本題的結(jié)論
解答: 解:∵從5名學(xué)生中選出4名分別參加A,B,C,D四科競(jìng)賽,其中甲不能參加A,B兩科競(jìng)賽,
∴可分為以下幾步:
(1)先從5人中選出4人,分為兩種情況:有甲參加和無(wú)甲參加.
有甲參加時(shí),選法有:
C
3
4
=4
種;
無(wú)甲參加時(shí),選法有:
C
4
4
=1
種.
(2)安排科目
有甲參加時(shí),先排甲,再排其它人.排法有:
A
1
2
A
3
3
=12
種.
無(wú)甲參加時(shí),排法有
A
4
4
=24
種.
綜上,4×12+1×24=72.
∴不同的參賽方案種數(shù)為72.
故答案為:72.
點(diǎn)評(píng):本題是一道排列組合題,要考慮特殊元素,本題還考查了分類討論的數(shù)學(xué)思想,本題有一定難度,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),直線l:x=my+c與橢圓C交于兩點(diǎn)M、N,且當(dāng)m=-
3
3
時(shí),M是橢圓C的上頂點(diǎn),且△MF1F2的周長(zhǎng)為6.設(shè)橢圓C的左頂點(diǎn)為A,直線AM、AN與直線x=4分別相交于點(diǎn)P、Q,當(dāng)m變化時(shí),以線段PQ為直徑的圓被x軸截得的弦長(zhǎng)為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin2t=-
π
0
cosxdx,其中t∈(0,π),則t=( 。
A、
π
3
B、
π
2
C、
3
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
tanα
1-tanα
=1,則
1
csc2α
+
1
cosαcscα
+
1
sec2α
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果f(x)是奇函數(shù),則①-f(x+1)=f(-x+1),②-f(x+1)=f(-x-1),正確的是
 
.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
(1)求證:AB1⊥面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求點(diǎn)C到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xex-ex+1的單調(diào)遞增區(qū)間是( 。
A、(-∞,e)
B、(1,e)
C、(e,+∞)
D、(e-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{a1}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足an=2(
Sn
+
Sn-1
)(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{
1
Sn
}的前n項(xiàng)和為T(mén)n,求證:Tn
5
4
(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4cosxsin(x+
π
3
)-
3

(1)求函數(shù)f(x)的周期及單調(diào)增區(qū)間.
(2)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過(guò)怎樣的變換得到?

查看答案和解析>>

同步練習(xí)冊(cè)答案