【題目】某高校在2018年的自主招生考試成績中隨機抽取100名學生的筆試成績,折合成標準分后,最高分是10分.按成績共分成五組:第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10),得到的頻率分布直方圖如圖所示:
(1)分別求第三,四,五組的頻率;
(2)該學校在第三,四,五組中用分層抽樣的方法抽取6名同學.
①已知甲同學和乙同學均在第三組,求甲、乙同時被選中的概率
②若在這6名同學中隨機抽取2名,設第4組中有X名同學,求X的分布列和數(shù)學期望.
【答案】(1)第三組的頻率是0.3,第四組的頻率是0.2,第五組的頻率是0.1(2)①②詳見解析
【解析】
(1)根據(jù)頻率等于對應的矩形面積求解即可.
(2)用分層抽樣的方法求得在第三,四,五組中對應的人數(shù),再利用排列組合的方法求解概率與分布列即可.
(1)第三組的頻率是0.150×2=0.3,
第四組的頻率是0.100×2=0.2,
第五組的頻率是0.050×2=0.1,
(2)①由(I)可知,第三,四,五組所占的比例為3:2:1,在分層抽樣的過程中第三組應抽到6×0.5=3個,
而第三組共有100×0.3=30個,
所以甲乙兩名同學同時被選中的概率為,
②第四組共有X名同學,所以X的取值為0,1,2
P(X=0);P(X=1);P(X=2);
所以X的分布列為
X | 0 | 1 | 2 |
P |
E(X)=0.
科目:高中數(shù)學 來源: 題型:
【題目】圓與軸交于、兩點(點在點的左側(cè)),、是分別過、點的圓的切線,過此圓上的另一個點(點是圓上任一不與、重合的動點)作此圓的切線,分別交、于、兩點,且、兩直線交于點.
()設切點坐標為,求證:切線的方程為.
()設點坐標為,試寫出與的關(guān)系表達式(寫出詳細推理與計算過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,棱長為的正方體的頂點在平面內(nèi),三條棱,,都在平面的同側(cè). 若頂點,到平面的距離分別為,;
(1)求平面與平面所成銳二面角的余弦值;
(2)求頂點到面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某職業(yè)學校有2000名學生,校服務部為了解學生在校的月消費情況,隨機調(diào)查了100名學生,并將統(tǒng)計結(jié)果繪成直方圖如圖所示.
(1)試估計該校學生在校月消費的平均數(shù);
(2)根據(jù)校服務部以往的經(jīng)驗,每個學生在校的月消費金額(元)和服務部可獲得利潤(元),滿足關(guān)系式:根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問題:
(i)將校服務部從一個學生的月消費中,可獲得的利潤記為,求的分布列及數(shù)學期望.
(ii)若校服務部計劃每月預留月利潤的,用于資助在校月消費低于400元的學生,估計受資助的學生每人每月可獲得多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為拋物線:的焦點,過的動直線交拋物線于,兩點.當直線與軸垂直時,.
(1)求拋物線的方程;
(2)設直線的斜率為1且與拋物線的準線相交于點,拋物線上存在點使得直線,,的斜率成等差數(shù)列,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓M經(jīng)過點F(1,0),且與直線l:x=﹣1相切,動圓圓心M的軌跡記為曲線C
(1)求曲線C的軌跡方程
(2)若點P在y軸左側(cè)(不含y軸)一點,曲線C上存在不同的兩點A、B,滿足PA,PB的中點都在曲線C上,設AB中點為E,證明:PE垂直于y軸.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的離心率為2,左右焦點分別為,,過右焦點且垂直于x軸的直線與雙曲線交于A,B兩點,且的周長為.
(1)求雙曲線C的方程;
(2)已知直線,點P是雙曲線C上的動點,求點P到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點分別是圓心在原點,半徑為和的圓上的動點.動點從初始位置開始,按逆時針方向以角速度作圓周運動,同時點從初始位置開始,按順時針方向以角速度作圓周運動.記時刻,點的縱坐標分別為.
(Ⅰ)求時刻,兩點間的距離;
(Ⅱ)求關(guān)于時間的函數(shù)關(guān)系式,并求當時,這個函數(shù)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com