5.已知U=R,集合A={x|x≥0},B={x|2≤x≤4},則A∩(∁UB)=(  )
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x≤2或x≥4}D.{x|0≤x<2或x>4}

分析 先求出補(bǔ)集∁UB,再根據(jù)并集的定義求出A∪(∁UB).

解答 解:∵B={x|2≤x≤4},
∴∁UB={x|x<1或x>4},
∵A={x|x≥0},
∴A∪(∁UB)={x|0≤x<1或x>4},
故選:D.

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知圓C:(x-3)2+(y-3)2=4及點(diǎn)A(1,1),M為圓C上的任意點(diǎn)N在線段MA的延長(zhǎng)線上,且$\overrightarrow{MA}$=2$\overrightarrow{AN}$.
(1)求點(diǎn)N的軌跡方程;
(2)求|$\overrightarrow{AM}$+$\overrightarrow{AN}$|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若$\frac{1}{a}$<$\frac{1}$<0,則下列結(jié)論正確的是( 。
A.a2>b2B.ab>b2C.a-b<0D.|a|+|b|=|a+b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.記等比數(shù)列{an}前n項(xiàng)和為Sn,已知a1+a3=30,3S1,2S2,S3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=3,bn+1-3bn=3an,求數(shù)列{bn}的前n項(xiàng)和Bn;
(3)刪除數(shù)列{an}中的第3項(xiàng),第6項(xiàng),第9項(xiàng),…,第3n項(xiàng),余下的項(xiàng)按原來(lái)的順序組成一個(gè)新數(shù)列,記為{cn},{cn}的前n項(xiàng)和為Tn,若對(duì)任意n∈N*,都有$\frac{{T}_{n+1}}{{T}_{n}}$>a,試求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在下列區(qū)間中,函數(shù)f(x)=ex+x-3的零點(diǎn)所在的區(qū)間為(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某中學(xué)有高中生3500人,初中生1500人.為了解學(xué)生的學(xué)習(xí)情況,用分層抽樣的方法從該校學(xué)生中抽取一個(gè)容量為n的樣本,已知從高中生中抽取70人,則n為100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.方程x2+xy=x的曲線是( 。
A.兩條直線B.一條直線
C.一個(gè)點(diǎn)D.一個(gè)點(diǎn)和一條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知在等邊△ABC中,AB=3,O為中心,過(guò)O的直線與△ABC的邊分別交于點(diǎn)M、N,則$\frac{1}{OM}$+$\frac{1}{ON}$的最大值是( 。
A.$\sqrt{3}$B.2C.$\sqrt{6}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=x2-ax+4滿足a∈[-1,7],那么對(duì)于a,使得f(x)≥0在x∈[1,4]上恒成立的概率為(  )
A.$\frac{3}{8}$B.$\frac{1}{2}$C.$\frac{5}{8}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案