已知雙曲線的焦點為,并且過點,則該雙曲線的漸近線方程為                                                         (    ) 
A.B.C.D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別是橢圓E:(a>b>0)的左、右焦點,過斜率為1的直線l與E 相較于A,B兩點,且,,成等差數(shù)列.
(Ⅰ)求E的離心率;
(Ⅱ)設(shè)點P(0,-1)滿足,求E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)已知橢圓C的中心在坐標(biāo)原點,離心率,且其中一個焦點與拋物線的焦點重合.
(1)求橢圓C的方程;
(2)過點S(,0)的動直線l交橢圓CA、B兩點,試問:在坐標(biāo)平面上是否存在一個定點T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過點T,若存在,求出點T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知直線所經(jīng)過的定點恰好是橢圓的一個焦點,且橢圓上的點到點的最大距離為3.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知圓,直線.試證明:當(dāng)點在橢圓上運動時,直線與圓恒相交,并求直線被圓所截得弦長的取值范圍.
(Ⅲ)設(shè)直線與橢圓交于兩點,若直線軸于點,且,當(dāng)變化時,求 的值;   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的焦點在軸,長軸長為10,離心率為,則該橢圓的標(biāo)準(zhǔn)方程為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線(a>0,b>0)的左準(zhǔn)線為l,左、右焦點分別為F1、F2,拋物線C2的準(zhǔn)線為l,焦點為F2,C1與C2的交點為M,則      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線的右焦點作直線交雙曲線與兩點,若實數(shù)使直線恰有三條,則="           " (     )
A.2B.3C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線與圓相交于兩點,為原點,則     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在曲線上的點是(   )
A      B     C         D

查看答案和解析>>

同步練習(xí)冊答案