精英家教網 > 高中數學 > 題目詳情
(2012•江蘇三模)若實數m,n∈{-1,1,2,3},m≠n,則方程
x2
m
+
y2
n
=1
表示的曲線是焦點在x軸上的雙曲線概率為
1
4
1
4
分析:曲線
x2
m
+
y2
n
=1
表示焦點在x軸上的雙曲線時,應有 n<0,m>0,共有3種方法,而 m、n所有取法為 A42種,利用概率公式公式即可求出概率.
解答:解:曲線
x2
m
+
y2
n
=1
表示焦點在x軸上的雙曲線時,應有n<0,m>0.
∴n=-1,m=1,2,3,共有3種方法,
而 m、n所有取法為 A42 種,
其概率為  p=
1×3
A
2
4
=
3
12
=
1
4
,
故答案為:
1
4
點評:本題考查雙曲線的標準方程,以及雙曲線的簡單性質的應用,以及求隨機事件的概率的方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•江蘇三模)如圖,在平面直角坐標系xoy中,圓C:(x+1)2+y2=16,點F(1,0),E是圓C上的一個動點,EF的垂直平分線PQ與CE交于點B,與EF交于點D.
(1)求點B的軌跡方程;
(2)當D位于y軸的正半軸上時,求直線PQ的方程;
(3)若G是圓上的另一個動點,且滿足FG⊥FE.記線段EG的中點為M,試判斷線段OM的長度是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•江蘇三模)數列{an}的前n項和為Sn,存在常數A,B,C,使得an+Sn=An2+Bn+C對任意正整數n都成立.
(1)若數列{an}為等差數列,求證:3A-B+C=0;
(2)若A=-
1
2
,B=-
3
2
,C=1
,設bn=an+n,數列{nbn}的前n項和為Tn,求Tn
(3)若C=0,{an}是首項為1的等差數列,設P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
,求不超過P的最大整數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•江蘇三模)在平面直角坐標系中,不等式組
y≥0
x-2y≥0
x+y-3≤0
表示的區(qū)域為M,t≤x≤t+1表示的區(qū)域為N,若1<t<2,則M與N公共部分面積的最大值為
5
6
5
6

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•江蘇三模)假定某人每次射擊命中目標的概率均為
12
,現在連續(xù)射擊3次.
(1)求此人至少命中目標2次的概率;
(2)若此人前3次射擊都沒有命中目標,再補射一次后結束射擊;否則.射擊結束.記此人射擊結束時命中目標的次數為X,求X的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•江蘇三模)已知數列{an}滿足a1=2,且對任意n∈N*,恒有nan+1=2(n+1)an
(1)求數列{an}的通項公式;
(2)設區(qū)間[
an
3n
,
an+1
3(n+1)
]
中的整數個數為bn,求數列{bn}的通項公式.

查看答案和解析>>

同步練習冊答案