(2013•徐匯區(qū)一模)已知各項均為正數(shù)的等比數(shù)列{an}的首項a1=1,公比為q,前n項和為Sn,若
lim
n→∞
Sn+1
Sn
=1
,則公比為q的取值范圍是
(0,1]
(0,1]
分析:根據(jù)等比數(shù)列的前n項和公式Sn,Sn+1列出關(guān)于q的表達式,利用條件
lim
n→+∞
Sn+1
Sn
=1
,分類討論然后求解即可得到答案.
解答:解:當(dāng)q=1的情況,Sn+1=(n+1)a1,所以
lim
n→+∞
Sn+1
Sn
=
n+1
n
=1
成立,
當(dāng)q≠1是的情況,Sn=
a1(1-qn)
1-q
,所以
lim
n→+∞
Sn+1
Sn
=
1-qn+1
1-qn

可以看出當(dāng)q為小于1的分數(shù)的時候
lim
n→+∞
Sn+1
Sn
=1
成立,
故答案為(0,1].
點評:本題的考點是數(shù)列的極限,此主要考查極限及其運算,其中涉及到等比數(shù)列前n項和的求法,要分類討論求解.屬于綜合題目有一定的計算量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐匯區(qū)一模)在△ABC中,∠A=60°,M是AB的中點,若|AB|=2,|BC|=2
3
,D在線段AC上運動,則
DB
DM
的最小值為
23
16
23
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐匯區(qū)一模)不等式
.
2x+1    20
0             2x1
3             2-1
.
≥0的解為
x≤0
x≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐匯區(qū)一模)函數(shù)f(x)=
ax2-1
x
在區(qū)間(0,+∞)上單調(diào)遞增,那么實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐匯區(qū)一模)方程組
2x-y=1
x+3y=-2
的增廣矩陣是
2-1   1
1  3  -2
2-1   1
1  3  -2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐匯區(qū)一模)已知冪函數(shù)f(x)的圖象過點(8,
1
2
),則此冪函數(shù)的解析式是f(x)=
x-
1
3
x-
1
3

查看答案和解析>>

同步練習(xí)冊答案