5.設(shè)集合M={-1,1},N={x|{x<0或x>$\frac{1}{2}}$},則下列結(jié)論正確的是( 。
A.N⊆MB.N∩M=∅C.M⊆ND.M∪N=R

分析 利用集合的包含關(guān)系,即可得出結(jié)論.

解答 解:集合M={-1,1},N={x|{x<0或x>$\frac{1}{2}}$},所以M⊆N,
故選:C

點評 本題主要考查集合間的包含關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若動直線x=a與函數(shù)f(x)=$\sqrt{3}$sin(x+$\frac{π}{6}$)和g(x)=sin($\frac{π}{3}$-x)的圖象分別交于M,N兩點,則|MN|的最大值為(  )
A.1B.2C.$\sqrt{3}$D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=x2-2x+alnx存在兩個極值點x1,x2(x1<x2),則t<$\frac{f({x}_{1})}{{x}_{2}}$恒成立,則t(  )
A.有最大值-$\frac{3}{2}-$ln2,無最小值B.有最小值-$\frac{3}{2}$-ln2,無最大值
C.無最大值也無最小值D.有最大值4ln2,且有最小值-$\frac{3}{2}$-ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A、B、C所對的邊分別是a、b、c,且滿足csinA-$\sqrt{3}$acosC=0.
(1)求角C的大;
(2)若c=2,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知兩個具有線性相關(guān)關(guān)系的變量的一組數(shù)據(jù)(x1,y1),(x2,y2)…(xn,yn),且回歸直線方程為$\hat{y}$=a+bx,則最小二乘法的思想是( 。
A.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]最小B.使得$\sum_{i=1}^{n}$|yi-(ai+bxi)|最小
C.使得$\sum_{i=1}^{n}$[yi2-(ai+bxi2]最小D.使得$\sum_{i=1}^{n}$[yi-(ai+bxi)]2最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(x,4),若$\overrightarrow a$∥$\overrightarrow b$,則實數(shù)x的值為( 。
A.8B.2C.-2D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列四個結(jié)論正確的是(  )
①若p∧q是真命題,則¬p可能是真命題;
②命題“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”;
③“a>5且b>-5”是“a+b>0”的充要條件;
④當(dāng)α<0時,冪函數(shù)y=xα在區(qū)間(0,+∞)上單調(diào)遞減.
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.對于定義域為D的函數(shù)y=f(x),若同時滿足下列條件:
①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b],則把y=f(x),x∈D叫閉函數(shù).
(1)求閉函數(shù)y=x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)f(x)=$\frac{3}{4}$x+$\frac{1}{x}$,(x>0)是否為閉函數(shù)?并說明理由;
(3)已知[a,b]是正整數(shù),且定義在(1,m)的函數(shù)y=k-$\frac{9}{x+1}$是閉函數(shù),求正整數(shù)m的最小值,及此時實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面積為4$\sqrt{3}$,求b的值.

查看答案和解析>>

同步練習(xí)冊答案