已知定義在R上的可導函數(shù)f(x),當x∈(1,+∞)時,(x-1)f′(x)-f(x)>0恒成立,若a=f(2),b=
1
2
f(3),c=(
2
+1)f(
2
),則a,b,c的大小關系為
 
考點:利用導數(shù)研究函數(shù)的單調性
專題:導數(shù)的綜合應用
分析:構造函數(shù)g(x)=
f(x)
x-1
,利用導數(shù)研究函數(shù)的單調性即可得到結論.
解答: 解:設g(x)=
f(x)
x-1
,當x>1時,g′(x)=
(x-1)f′(x)-f(x)
(x-1)2
>0,
即此時函數(shù)單調遞增.
則a=f(2)=g(2),b=
1
2
f(3)=g(3),c=(
2
+1)f(
2
)=g(
2
),
2
<2<3,
∴g(
2
)<g(2)<g(3),
即c<a<b,
故答案為:c<a<b.
點評:本題主要考查函數(shù)值的大小比較,構造函數(shù)g(x)=
f(x)
x-1
,利用導數(shù)研究函數(shù)的單調性是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若直線l:3x-y-6=0與圓x2+y2-2x-4y=0交于A,B兩點,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將7個“省三好學生”名額分配給5個不同的學校,其中甲乙兩校各要有2個名額,則不同的分配方案種數(shù)有
 
 種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三棱錐的底面邊長為6,高為4,則斜高為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若空間四邊形ABCD的兩條對角線AC、BD的長分別為8、12,則平行于兩條對角線的截面四邊形的周長的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個圓錐的側面展開圖是圓心角為π,半徑為1的扇形,則這個圓錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sinα+conα=
1
2
,則
con2α
sin(α-
π
4
)
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α,β所成的二面角為80°,P為α,β外一定點,則過點P作直線與α,β都成30°的直線有( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)1-2i(i是虛數(shù)單位)的虛部是( 。
A、2iB、-2iC、2D、-2

查看答案和解析>>

同步練習冊答案