已知橢圓的焦點(diǎn)為,點(diǎn)是橢圓上的一點(diǎn),軸的交點(diǎn)恰為的中點(diǎn), .
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓的右頂點(diǎn),過焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求面積的取值范圍.

(1)(2)

解析試題分析:(1)根據(jù)已知分析可得點(diǎn)橫坐標(biāo)為1,縱坐標(biāo)為,,即點(diǎn)。法一:將代入橢圓方程,結(jié)合,解方程組可得的值。法二:根據(jù)橢圓的定義求點(diǎn)到兩焦點(diǎn)的距離的和即為,再根據(jù)關(guān)系式求得。(2)設(shè)過點(diǎn)的直線的斜率為,顯然(注意討論直線斜率存在與否)。當(dāng)直線的斜率不存在時(shí),直線方程為,將代入橢圓方程可得的縱坐標(biāo),從而可得,根據(jù)橢圓圖像的對稱性可知,因此可得。當(dāng)直線斜率存在時(shí)設(shè)直線的方程為,將直線與橢圓方程聯(lián)立,消去(或)得關(guān)于的一元二次方程,從而可得根與系數(shù)的關(guān)系。根據(jù)弦長公式求,再用點(diǎn)到線的距離公式求點(diǎn)到直線的距離,所以。最后根據(jù)基本不等式求其范圍即可。
解:(1)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/b4/1/fuhfa1.png" style="vertical-align:middle;" />為的中點(diǎn),的中點(diǎn),,
所以,且.                          1分
所以.
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/09/7/1yv2m3.png" style="vertical-align:middle;" />,
所以.                               2分
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/a7/a/w3yyk1.png" style="vertical-align:middle;" />,                              3分
所以.
所以橢圓的方程為.                               4分
(2)設(shè)過點(diǎn)的直線的斜率為,顯然.
(1)當(dāng)不存在時(shí),直線的方程為,                      
所以.
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/ce/d/erqil2.png" style="

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)(2011•天津)設(shè)橢圓+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.點(diǎn)P(a,b)滿足|PF2|=|F1F2|.
(Ⅰ)求橢圓的離心率e;
(Ⅱ)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn),若直線PF2與圓(x+1)2+=16相交于M,N兩點(diǎn),且|MN|=|AB|,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足三點(diǎn)的圓與直線相切.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)作斜率為k的直線與橢圓C交于M,N兩點(diǎn),線段MN的垂直平分線與x軸相交于點(diǎn)P(m,0),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓經(jīng)過點(diǎn)P(1.),離心率e=,直線l的方程為x=4.

(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點(diǎn)F的任一弦(不經(jīng)過點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為.問:是否存在常數(shù)λ,使得?若存在,求λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓,直線的方程為,過右焦點(diǎn)的直線與橢圓交于異于左頂點(diǎn)兩點(diǎn),直線,交直線分別于點(diǎn),
(1)當(dāng)時(shí),求此時(shí)直線的方程;
(2)試問,兩點(diǎn)的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓交于兩點(diǎn),是否存在實(shí)數(shù),使成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,其短軸兩端點(diǎn)為.
(1)求橢圓的方程;
(2)若是橢圓上關(guān)于軸對稱的兩個(gè)不同點(diǎn),直線軸分別交于點(diǎn).判斷以為直徑的圓是否過點(diǎn),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知圓,經(jīng)過橢圓的右焦點(diǎn)F及上頂點(diǎn)B,過圓外一點(diǎn)傾斜角為的直線交橢圓于C,D兩點(diǎn),
(1)求橢圓的方程;
(2)若右焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:(a>b>0),過點(diǎn)(0,1),且離心率為
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點(diǎn),直線lx=2x軸交于點(diǎn)D,點(diǎn)P是橢圓C上異于A,B的動(dòng)點(diǎn),直線AP,BP分別交直線l于E,F(xiàn)兩點(diǎn).證明:當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),恒為定值.

查看答案和解析>>

同步練習(xí)冊答案