在區(qū)間上給定曲線,試在此區(qū)間內(nèi)確定點(diǎn)的值,使圖中所給陰影部分的面積之和最。

.

解析試題分析:先由定積分的幾何意義分別求出,,從而,然后通過導(dǎo)數(shù)確定函數(shù)的極值,并求出端點(diǎn)值,比較極值與端點(diǎn)值的大小,最小的就是最小值,問題就解決了.
試題解析:設(shè) 
當(dāng)時(shí), 
 

∴陰影部分的面積為    
,令可得 
 ,    
可知當(dāng)時(shí),有最小值.
考點(diǎn):1.定積分的幾何意義;2.函數(shù)的最值與導(dǎo)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在(0,1)上單調(diào)遞減.
(1)求a的取值范圍;
(2)令,求在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)圓柱形圓木的底面半徑為1m,長(zhǎng)為10m,將此圓木沿軸所在的平面剖成兩個(gè)部分.現(xiàn)要把其中一個(gè)部分加工成直四棱柱木梁,長(zhǎng)度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設(shè),木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關(guān)于θ的函數(shù)表達(dá)式;
(2)求的值,使體積V最大;
(3)問當(dāng)木梁的體積V最大時(shí),其表面積S是否也最大?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)如果對(duì)于任意,且,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,半徑為30的圓形(為圓心)鐵皮上截取一塊矩形材料,其中點(diǎn)在圓弧上,點(diǎn)在兩半徑上,現(xiàn)將此矩形材料卷成一個(gè)以為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)與矩形材料的邊的夾角為,圓柱的體積為.

(1)求關(guān)于的函數(shù)關(guān)系式?
(2)求圓柱形罐子體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

經(jīng)銷商用一輛型卡車將某種水果運(yùn)送(滿載)到相距400km的水果批發(fā)市場(chǎng).據(jù)測(cè)算,型卡車滿載行駛時(shí),每100km所消耗的燃油量(單位:)與速度(單位:km/h)的關(guān)系近似地滿足,除燃油費(fèi)外,人工工資、車損等其他費(fèi)用平均每小時(shí)300元.已知燃油價(jià)格為7.5元/L.
(1)設(shè)運(yùn)送這車水果的費(fèi)用為(元)(不計(jì)返程費(fèi)用),將表示成速度的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運(yùn)送這車水果的費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;   
(3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=ax3+bx+c(a≠0)為奇函數(shù),其圖象在點(diǎn)(1,f(1))處的切線與直線x-6y-7=0垂直,導(dǎo)函數(shù)f′(x)的最小值為-12.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),,.
(1)若,求的單調(diào)遞增區(qū)間;
(2)若曲線軸相切于異于原點(diǎn)的一點(diǎn),且的極小值為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案