7.已知|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,那么向量$\overrightarrow{a}$與向量$\overrightarrow$的關(guān)系是垂直.

分析 根據(jù)平面向量的模長公式與數(shù)量積運算,得出$\overrightarrow{a}$•$\overrightarrow$=0時$\overrightarrow{a}$⊥$\overrightarrow$.

解答 解:|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,
∴${(\overrightarrow{a}+\overrightarrow)}^{2}$=${(\overrightarrow{a}-\overrightarrow)}^{2}$,
${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$=${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$,
∴$\overrightarrow{a}$•$\overrightarrow$=0,
∴$\overrightarrow{a}$⊥$\overrightarrow$,
∴向量$\overrightarrow{a}$與向量$\overrightarrow$的關(guān)系是垂直.
故答案為:垂直.

點評 本題考查了平面向量的數(shù)量積與模長公式的應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)向量$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(a,-1),$\overrightarrow{OC}$=(-b,0),其中 O 為坐標原點,b>0,若 A,B,C 三點共線,則$\frac{1}{a}$+$\frac{2}$的最小值為( 。
A.4B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若對于任意的實數(shù)$x∈({0,\frac{1}{2}}]$,都有2-2x-logax<0恒成立,則實數(shù)a的取值范圍是$\frac{1}{4}$<a<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知拋物線C:y2=2px(p>0)與直線$x-\sqrt{2}y+4=0$相切.
(1)求該拋物線的方程;
(2)在x軸正半軸上,是否存在某個確定的點M,過該點的動直線l與拋物線C交于A,B兩點,使得$\frac{1}{{|AM{|^2}}}+\frac{1}{{|BM{|^2}}}$為定值.如果存在,求出點M坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=|2x+3|-|2x-a|,a∈R.
(1)若不等式f(x)≤-5的解集非空,求實數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)的圖象關(guān)于點(-$\frac{1}{2}$,0)對稱,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=|2x-1|,x∈R.
(Ⅰ)解不等式f(x)<|x|+1;
(Ⅱ)若對于x,y∈R,有|x-y-1|≤$\frac{1}{3}$,|2y+1|≤$\frac{1}{6}$,求證:f(x)<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)+m(m∈R),當x∈[0,$\frac{π}{2}$]時,f(x)的最小值為-1.
(Ⅰ)求m的值;
(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延長AB至D,使BC=BD,且AD=5,求△ACD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{e^x},x≥-1}\\{ln(-x),x<-1}\end{array}}\right.$,則“x=0”是“f(x)=1”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.正方體的內(nèi)切球和外接球的表面積之比為(  )
A.1:2B.1:3C.1:4D.2:3

查看答案和解析>>

同步練習冊答案