4.隨機變量a服從正態(tài)分布N(1,σ2),且P(0<a<1)=0.3000.已知a>0,a≠1,則函數(shù)y=ax+1-a圖象不經(jīng)過第二象限的概率為( 。
A.0.3750B.0.3000C.0.2500D.0.2000

分析 隨機變量ξ服從正態(tài)分布N(1,σ2),得到曲線關(guān)于x=1對稱,根據(jù)曲線的對稱性得到大于2的數(shù)據(jù)的概率,根據(jù)概率的性質(zhì)得到結(jié)果.

解答 解:∵y=ax+1-a圖象不經(jīng)過第二象限,
∴1-a≤-1,
∴a≥2,
隨機變量ξ服從正態(tài)分布N(1,σ2),且P(0<a<1)=0.3000,
∴P(1<a<2)=0.3000,
∴P(a>2)=0.2000,
∴函數(shù)y=ax+1-a圖象不經(jīng)過第二象限的概率為$\frac{0.2}{1-0.2}$=0.2500,
故選:C

點評 本題考查正態(tài)分布曲線的特點及曲線所表示的意義,考查概率的性質(zhì),是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某商場舉行購物抽獎活動,抽獎箱中放有編號分別為1,2,3,4,5的五個小球,小球除編號不同外,其余均相同.
活動規(guī)則如下:從抽獎箱中隨機抽取一球,若抽到的小球編號為3,則獲得獎金100元;若抽到的小球編號為偶數(shù),則獲得獎金50元;若抽到其余編號的小球,則不中獎.現(xiàn)某顧客依次有放回的抽獎兩次.
(I)求該顧客兩次抽獎后都沒有中獎的概率;
(Ⅱ)求該顧客兩次抽獎后獲得獎金之和為100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖所示,△ABC中,∠C=90°,∠B=60°,AB=2$\sqrt{3}$,在三角形內(nèi)挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點C、M,與AC交于N),則圖中陰影部分繞直線AC旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的內(nèi)外表面積之比為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)$f(x)=\left\{\begin{array}{l}x-2\;,x≥5\\ f[{f(x+6)}],x<5\end{array}\right.$,則f(1)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在三角形ABC中,$\overrightarrow{BC}=3\overrightarrow{BD},\overrightarrow{AB}•\overrightarrow{AC}=\frac{1}{2},∠A=\frac{π}{3}$,則$|\overrightarrow{AD}|$的最小值為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.有一長為1的斜坡,它的傾斜角為20°,現(xiàn)高不變,斜角改為10°,則斜坡長為2lcos10°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.斜率為1的直線與橢圓x2+4y2=4交于A,B兩點,則|AB|的最大值為$\frac{4\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合M={x|x<0},N={x|x2-x-2<0},則M∩N=(  )
A.{x|-1<x<0}B.{x|-2<x<0}C.{x|x<2}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖,若n=4時,則輸出的結(jié)果為$\frac{4}{9}$.

查看答案和解析>>

同步練習(xí)冊答案