精英家教網(wǎng)如圖,在Rt△ABC中,已知BC=a,若長(zhǎng)為2a的線段PQ以點(diǎn)A為中點(diǎn),問(wèn)
PQ
BC
的夾角θ取何值時(shí)
BP
CQ
的值最大?并求出這個(gè)最大值.
分析:要求
PQ
BC
的夾角θ取何值時(shí)
BP
CQ
的值最大,我們有兩種思路:
法一:是將向量
PQ
BC
根據(jù)向量加減法的三角形法則,進(jìn)行分析,分解成用向量
AP
、
AQ
、
AC
、
AB
表示的形式,然后根據(jù)|
AP
|=|
AQ
|=a
,
AC
AB
AC
AB
=0,構(gòu)造一個(gè)關(guān)于cosθ的式子,然后根據(jù)cosθ的取值范圍,分析出
BP
CQ
的最大值;
法二:是以直角頂點(diǎn)A為坐標(biāo)原點(diǎn),兩直角邊所在直線為坐標(biāo)軸建立如圖所示的平面直角坐標(biāo)系.求出各頂點(diǎn)的坐標(biāo)后,進(jìn)而給出向量
BP
CQ
的坐標(biāo),然后利用平面向量的數(shù)量值運(yùn)算公式,構(gòu)造一個(gè)關(guān)于cosθ的式子,然后根據(jù)cosθ的取值范圍,分析出
BP
CQ
的最大值.
解答:精英家教網(wǎng)解:如下圖所示:
解法一:∵
AB
AC
,∴
AB
AC
=0

AP
=-
AQ
BP
=
AP
-
AB
,
CQ
=
AQ
-
AC
,
BP
CQ
=(
AP
-
AB
)•(
AQ
-
AC
)

=
AP
AQ
-
AP
AC
-
AB
AQ
+
AB
AC

=-a2-
AP
AC
+
AB
AP

=-a2+
1
2
PQ
BC

=-a2+a2cosθ.
故當(dāng)cosθ=1,即θ=0(
PQ
BC
方向相同)時(shí),
BP
CQ
最大.其最大值為0.
解法二:以直角頂點(diǎn)A為坐標(biāo)原點(diǎn),兩直角邊所在直線為坐標(biāo)軸建立如圖所示的平面直角坐標(biāo)系.
精英家教網(wǎng)設(shè)|AB|=c|AC|=b,則A(0,0),B(c,0),C(0,b),
且|PQ|=2a,|BC|=a.
設(shè)點(diǎn)P的坐標(biāo)為(x,y),則Q(-x,-y).
BP
=(x-c,y),
CQ
=(-x,-y-b)
,
BC
=(-c,b),
PQ
=(-2x,-2y)

BP
CQ
=(x-c)(-x)+y(-y-b)

=-(x2+y2)+cx-by.
∵cosθ=
PQ
BC
|
PQ
|•|
BC
|
=
cx-by
a2

∴cx-by=a2cosθ.
BP
CQ
=-a2+a2cosθ

故當(dāng)cosθ=1,
即θ=0(
PQ
BC
方向相同)時(shí),
BC
CQ
最大,其最大值為0.
點(diǎn)評(píng):本小題主要考查向量的概念,平面向量的運(yùn)算法則,考查運(yùn)用向量及函數(shù)知識(shí)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點(diǎn),∠DAC=30°,BD=2,AB=2
3
,則AC的長(zhǎng)為( 。
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點(diǎn)P.
(1)若AE=CD,點(diǎn)M為BC的中點(diǎn),求證:直線MP∥平面EAB
(2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O點(diǎn),OA=OB,DO=2,曲線E過(guò)C點(diǎn),動(dòng)點(diǎn)P在E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的方程;
(2)過(guò)D點(diǎn)的直線L與曲線E相交于不同的兩點(diǎn)M、N且M在D、N之間,設(shè)
DM
DN
=λ,試確定實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點(diǎn),將△BCD沿直線CD翻折,若在翻折過(guò)程中存在某個(gè)位置,使得CB⊥AD,則x的取值范圍是(  )
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案