設(shè)直線是曲線的一條切線,.
(1)求切點坐標(biāo)及的值;
(2)當(dāng)時,存在,求實數(shù)的取值范圍.
(1)切點,或者切點,;(2).
解析試題分析:(1)先設(shè)切點,然后依題意計算出,由,計算出切點的橫坐標(biāo),代入切線的方程,可得切點的縱坐標(biāo),最后再將切點的坐標(biāo)代入曲線C的方程計算得的值;(2)結(jié)合(1)中求出的,確定,設(shè),然后將存在使成立問題,轉(zhuǎn)化為,進(jìn)而求出,分、、三種情況討論函數(shù)在上的單調(diào)性,確定,相應(yīng)求解不等式,即可確定的取值范圍.
試題解析:(1)設(shè)直線與曲線相切于點
∴,解得或
代入直線方程,得切點坐標(biāo)為或
切點在曲線上,∴或
綜上可知,切點,或者切點, 5分
(2)∵,∴,設(shè),若存在使成立,則只要 7分
①當(dāng)即時
,是增函數(shù),不合題意 8分
②若即
令,得,∴在上是增函數(shù)
令,解得,∴在上是減函數(shù)
,,解得 10分
③若即,
令,解得
,∴在上是增函數(shù)
∴
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln(x+1)-x2-x.
(1)若關(guān)于x的方程f(x)=-x+b在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,求實數(shù)b的取值范圍;
(2)證明:對任意的正整數(shù)n,不等式2+++…+ >ln(n+1)都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ex-ln(x+m).
(1)設(shè)x=0是f(x)的極值點,求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時,證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2 (f′(x)是f(x)的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)求證:×…×< (n≥2,n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若函數(shù)在處取得極值,求實數(shù)的值;
(2)若,求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像過坐標(biāo)原點,且在點 處的切線斜率為.
(1)求實數(shù)的值;
(2) 求函數(shù)在區(qū)間上的最小值;
(Ⅲ)若函數(shù)的圖像上存在兩點,使得對于任意給定的正實數(shù)都滿足是以為直角頂點的直角三角形,且三角形斜邊中點在軸上,求點的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為函數(shù)圖象上一點,為坐標(biāo)原點,記直線的斜率.
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(Ⅱ)如果對任意的,,有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若,恒成立,求實數(shù)的最小值;
(3)證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com