精英家教網 > 高中數學 > 題目詳情

【題目】某處有一塊閑置用地,如圖所示,它的邊界由圓O的一段圓弧和兩條線段,構成.已知圓心O在線段上,現測得圓O半徑為2百米,,.現規(guī)劃在這片閑置用地內劃出一片梯形區(qū)域用于商業(yè)建設,該梯形區(qū)域的下底為,上底為,點M在圓弧(點D在圓弧上,且)上,點N在圓弧上或線段..

1)將梯形的面積表示為的函數;

2)當為何值時,梯形的面積最大?求出最大面積.

【答案】12)當時,梯形的面積取得最大值平方百米.

【解析】

(1)結合點N的位置分析角相應的取值范圍,分情況討論即可求解;

(2)根據(1)的函數,利用導數研究單調性即可求解函數的最大值.

1)因為點M在圓弧上,,當點M分別與點A,D重合時,梯形不存在,

所以.

過點B,且交圓弧于點,連結,因為,所以.

由垂徑定理可知垂直平分,

因此,

因此,當時,點N在圓弧上,當上時,點N在線段.

①當時,因為,所以.

,所以.

由垂徑定理可知,在中,,

因為,所以在中,,,

所以梯形的面積

;

②當時,因為,,,

所以四邊形為矩形,故,

所以梯形的面積

.

綜上,

2)①當時,,

.

因為時,,

所以,

上單調遞減,.

②當時,,

.

因為時,,

所以

上單調遞增,.

綜上,當且僅當時,梯形的面積取得最大值平方百米.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數方程為at為參數).O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθsinθ)=1.

1)當t為參數,α時,判斷曲線C與直線l的位置關系;

2)當α為參數,t2時,直線l與曲線C交于A,B兩點,設P1,0),求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著生活節(jié)奏的加快以及智能手機的普及,外賣點餐逐漸成為越來越多用戶的餐飲消費習慣,由此催生了一批外賣點餐平臺.已知某外賣平臺的送餐費用與送餐距離有關(該平臺只給5千米范圍內配送),為調査送餐員的送餐收入,現從該平臺隨機抽取100名點外賣的用戶進行統(tǒng)計,按送餐距離分類統(tǒng)計結果如表:

送餐距離(千米)

0,1]

1,2]

2,3]

34]

4,5]

頻數

15

25

25

20

15

以這100名用戶送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.

1)若某送餐員一天送餐的總距離為100千米,試估計該送餐員一天的送餐份數;(四舍五入精確到整數,且同一組中的數據用該組區(qū)間的中點值為代表).

2)若該外賣平臺給送餐員的送餐費用與送餐距離有關,規(guī)定2千米內為短距離,每份3元,2千米到4千米為中距離,每份7元,超過4千米為遠距離,每份12元.記X為送餐員送一份外賣的收入(單位:元),求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市對一項惠民市政工程滿意程度(分值:分)進行網上調查,有2000位市民參加了投票,經統(tǒng)計,得到如下頻率分布直方圖(部分圖):

現用分層抽樣的方法從所有參與網上投票的市民中隨機抽取位市民召開座談會,其中滿意程度在的有5人.

1)求的值,并填寫下表(2000位參與投票分數和人數分布統(tǒng)計);

滿意程度(分數)

人數

2)求市民投票滿意程度的平均分(各分數段取中點值);

3)若滿意程度在5人中恰有2位為女性,座談會將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】202048日零時正式解除離漢通道管控,這標志著封城76天的武漢打開城門了.在疫情防控常態(tài)下,武漢市有序復工復產復市,但是仍然不能麻痹大意,仍然要保持警惕,嚴密防范、慎終如始.為科學合理地做好小區(qū)管理工作,結合復工復產復市的實際需要,某小區(qū)物業(yè)提供了,兩種小區(qū)管理方案,為了了解哪一種方案最為合理有效,物業(yè)隨機調查了50名男業(yè)主和50名女業(yè)主,每位業(yè)主對,兩種小區(qū)管理方案進行了投票(只能投給一種方案),得到下面的列聯(lián)表:

方案

方案

男業(yè)主

35

15

女業(yè)主

25

25

1)分別估計,方案獲得業(yè)主投票的概率;

2)判斷能否有95%的把握認為投票選取管理方案與性別有關.

附:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】高鐵是我國國家名片之一,高鐵的修建凝聚著中國人的智慧與汗水.如圖所示,B、EF為山腳兩側共線的三點,在山頂A處測得這三點的俯角分別為、,計劃沿直線BF開通穿山隧道,現已測得BC、DEEF三段線段的長度分別為3、1、2.

(1)求出線段AE的長度;

(2)求出隧道CD的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱柱中,四邊形ABCD是邊長等于2的菱形,,平面ABCD,O,E分別是,AB的中點,ACDE于點H,點FHC的中點

1)求證:平面;

2)若OF與平面ABCD所成的角為60°,求三棱錐的表面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】CES是世界上最大的消費電子技術展,也是全球最大的消費技術產業(yè)盛會.2020CES消費電子展于202017日—10日在美國拉斯維加斯舉辦.在這次CES消費電子展上,我國某企業(yè)發(fā)布了全球首款彩色水墨屏閱讀手機,驚艷了全場.若該公司從7名員工中選出3名員工負責接待工作(3名員工的工作視為相同的工作),再選出2名員工分別在上午、下午講解該款手機性能,若其中甲和乙至多有1人負責接待工作,則不同的安排方案共有__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖①,在等腰梯形中,,,.,交于點.沿線段折起,使得點在平面內的投影恰好是點,如圖.

1)若點為棱上任意一點,證明:平面平面.

2)在棱上是否存在一點,使得三棱錐的體積為?若存在,確定點的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案