【題目】高鐵是我國(guó)國(guó)家名片之一,高鐵的修建凝聚著中國(guó)人的智慧與汗水.如圖所示,B、EF為山腳兩側(cè)共線的三點(diǎn),在山頂A處測(cè)得這三點(diǎn)的俯角分別為、,計(jì)劃沿直線BF開通穿山隧道,現(xiàn)已測(cè)得BC、DE、EF三段線段的長(zhǎng)度分別為3、12.

(1)求出線段AE的長(zhǎng)度;

(2)求出隧道CD的長(zhǎng)度.

【答案】(1)

(2)

【解析】

1)由已知在△AEF中,由正弦定理即可解得AE的值;(2)由已知可得∠BAE90°,在RtABE中,可求BE的值,進(jìn)而可求CDBEBCDE的值.

1)由已知可得EF2,∠F45°,∠EAF60°-45°=15°,

在△AEF中,由正弦定理得:,

,

解得;

2)由已知可得∠BAE180°﹣30°﹣60°=90°,

RtABE中,,

所以隧道長(zhǎng)度

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,是過(guò)定點(diǎn)且傾斜角為的直線,在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為 .

(1)寫出直線的參數(shù)方程,并將曲線的方程為化直角坐標(biāo)方程;

(2)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),當(dāng)時(shí),的極大值為7;當(dāng)時(shí),有極小值.

(1)的值;

(2)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,算得,

,

(1).求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程

(2).判斷變量之間的正相關(guān)還是負(fù)相關(guān);

(3).若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)和短軸的兩個(gè)頂點(diǎn)構(gòu)成的四邊形是一個(gè)正方形,且其周長(zhǎng)為.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,若點(diǎn)總在以線段為直徑的圓內(nèi),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

Ⅰ)若的極小值點(diǎn),求實(shí)數(shù)的取值范圍及函數(shù)的極值;

Ⅱ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等差數(shù)列, 是等比數(shù)列, , , .

(1)求, 的通項(xiàng)公式;

(2)的前項(xiàng)和為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形為平行四邊形,  平面,且的中點(diǎn).

1)求證: 平面;

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語(yǔ)音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國(guó),甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間情況,某經(jīng)銷化妝品的微商在一廣場(chǎng)隨機(jī)采訪男性、女性微信用戶各50名.其中每天玩微信時(shí)間超過(guò)6小時(shí)的用戶列為微信控,否則稱其為非微信控,調(diào)查結(jié)果如表:

微信控

非微信控

合計(jì)

男性

26

24

50

女性

30

20

50

合計(jì)

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從參與調(diào)查的女性用戶中按分層抽樣的方法選出5人贈(zèng)送營(yíng)養(yǎng)面膜1份,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽選取的5人中再隨機(jī)抽取3人贈(zèng)送價(jià)值200元的護(hù)膚品套裝,記這3人中“微信控”的人數(shù)為X,試求X的分布列及數(shù)學(xué)期望及方差.

參考公式:,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊(cè)答案