已知非零向量
a
,
b
,下列結(jié)論中,不正確的是( 。
A、
0
a
=0
B、
a
2=|
a
|2
C、
a
b
=0?
a
b
D、|
a
b
|=|
a
||
b
|
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用數(shù)量積的定義和性質(zhì)即可判斷出.
解答: 解:對于D:非零向量
a
,
b
,由|
a
b
|=|
a
| |
b
|cos<
a
b
≤|
a
| |
b
|
,可知D不正確.
故選:D.
點評:本題考查了數(shù)量積的定義和性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2-
y2
b2
=1的兩焦點分別為F1、F2,以F1F2為直徑的圓與雙曲線的一個交點為P,若△PF1F2的面積為3,則點P到x軸的距離為( 。
A、3
B、2
C、
3
2
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>2,b>3,求a+b+
1
(a-2)(b-3)
的最小值是( 。
A、3B、8C、9D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤-1
2x+2,x>-1
,則f(a)>2的實數(shù)a的取值范圍是( 。
A、(-∞,-2)∪(0,+∞)
B、(-2,-1)
C、(-2,0)
D、(∞,-2)∪(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人睡午覺醒來,發(fā)現(xiàn)表停了,他打開收音機想聽電臺整點報時,則他等待的時間不多于5分鐘的概率是( 。
A、
1
6
B、
1
12
C、
1
60
D、
1
72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sinx的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得的圖象向左平移
π
3
個單位,得到的圖象對應(yīng)的解析式是( 。
A、y=sin(2x+
π
3
B、y=sin(
1
2
x+
π
3
C、y=sin(
1
2
x+
π
6
D、y=sin(2x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在斜二側(cè)畫法的規(guī)則下,下列結(jié)論正確的是(  )
A、角的水平放置的直觀圖不一定是角
B、相等的角在直觀圖中仍然相等
C、相等的線段在直觀圖中仍然相等
D、若兩條線段平行且相等,則在直觀圖中對應(yīng)的兩條線段仍然平行且相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=sin(2x+
π
3
)的圖象向左平移θ個單位,得到偶函數(shù)g(x)的圖象,則θ的最小正值為( 。
A、
π
12
B、
5
12
π
C、
π
3
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2sin(ωx+
3
),2),
b
=(2cosωx,0)(ω>0),函數(shù)f(x)=
a
b
的圖象與直線y=-2+
3
的相鄰兩個交點之間的距離為π,
(1)求ω的值;
(2)求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案