13.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}sin2x-{cos^2}x-\frac{1}{2}$,x∈R.
(1)求函數(shù)f(x)的最大值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A,B,C的對邊分別a,b,c且c=3,f(C)=0,若sinB=2sinA,求:邊a,邊b的值.

分析 (1)將f(x)解析式第二項利用二倍角的余弦函數(shù)公式化簡,整理后再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),由正弦函數(shù)的值域得出f(x)的最大值,找出ω的值,代入周期公式,即可求出f(x)的最小正周期;
(2)由(1)確定的f(x)解析式及f(C)=0,求出sin(2C-$\frac{π}{6}$)=1,由C的范圍,求出2C-$\frac{π}{6}$的范圍,利用特殊角的三角函數(shù)值及正弦函數(shù)的圖象求出C的度數(shù),由sinB=2sinA,利用正弦定理得到b=2a①,再利用余弦定理得到c2=a2+b2-2abcosC,將c與cosC的值代入得到關(guān)于a與b的方程,記作②,聯(lián)立①②即可求出a與b的值.

解答 解:(1)由函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}sin2x-{cos^2}x-\frac{1}{2}$,x∈R,
得$f(x)=\frac{{\sqrt{3}}}{2}sin2x-\frac{1+cos}{2}-\frac{1}{2}=sin(2x-\frac{π}{6})-1$,∴f(x)的最大值為0.∵ω=2,∴f(x)最小正周期T=$\frac{2π}{2}$=π;
(2)由(1)知$f(C)=sin(2C-\frac{π}{6})-1=0$,則$sin(2C-\frac{π}{6})=1$.
∵0<C<π,∴0<2C<2π,
∴$-\frac{π}{6}<2C-\frac{π}{6}<\frac{11π}{6}$,∴$2C-\frac{π}{6}=\frac{π}{2}$即$C=\frac{π}{3}$.
∵sinB=2sinA,∴$\frac{a}=\frac{1}{2}$,①
由余弦定理得${c^2}={a^2}+{b^2}-2abcos\frac{π}{3}$,即a2+b2-ab=9,②
由①②解得$a=\sqrt{3},b=2\sqrt{3}$.

點評 本題考查了正弦、余弦定理,正弦函數(shù)的定義域與值域,二倍角的余弦函數(shù)公式,以及兩角和與差的正弦函數(shù)公式,熟練掌握定理及公式是解本題的關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若5555=8k+r(k,r為自然數(shù)),則r的最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.用定義法判斷函數(shù)f(x)=4x-$\frac{4}{x}$在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知α是三角形的內(nèi)角,且$cosα=-\frac{3}{5}$,則tanα等于( 。
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖所示是用模擬方法估計圓周率π值的程序框圖,P表示估計結(jié)果,則圖中空白框內(nèi)應(yīng)填入P=$\frac{M}{1000}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義域為R的偶函數(shù)f(x)滿足對?x∈R,有f(x+2)=f(x)-f(1),且當(dāng)x∈[0,1]時,f(x)=-2x2+4x-2,若函數(shù)y=f(x)-loga(|x|+1)在(0,+∞)上至少有三個零點,則a的取值范圍是(0,$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.用符號語言表述面面平行的判定定理a?α,b?α,a∩b=A,a∥β,b∥β⇒α∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)集合A={0,2,a},B={a2},若A∪B=A,則a的值有3個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知△ABC中,|$\overrightarrow{BA}$|=6,|$\overrightarrow{CB}$|=3,$\overrightarrow{CB}$•$\overrightarrow{AB}$=9,若$\overrightarrow{AE}$=$\overrightarrow{EB}$,$\overrightarrow{AP}$=2$\overrightarrow{PC}$,則$|\overrightarrow{PE}|$=$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案