已知a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊,若數(shù)學(xué)公式=-數(shù)學(xué)公式,則B=________.


分析:利用正弦定理化簡(jiǎn)表達(dá)式,通過(guò)兩角和的正弦函數(shù)公式,求出sinA的關(guān)系式,求出cosB即可得到結(jié)果.
解答:因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/2654.png' />=-所以=-,即2sinAcosB+sinCcosB+cosCsinB=0
所以2sinAcosB+sin(C+B)=0,2sinAcosB+sinA=0,因?yàn)锳是三角形內(nèi)角,所以2cosB+1=0,
cosB=-,所以B=
故答案為:
點(diǎn)評(píng):本題是基礎(chǔ)題,考查正弦定理的應(yīng)用,三角形的邊角關(guān)系,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c分別是△ABC三個(gè)內(nèi)角A、B、C的對(duì)邊.
(1)若b2=ac,求角B的范圍.
(2)若acosA=bcosB,試判斷△ABC的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若a=1,b=
3
,A+C=2B,則sinC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊,若
cosB
cosC
=-
b
2a+c
,則B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別是△ABC中角A,B,C的對(duì)邊,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,且滿(mǎn)足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)當(dāng)A為銳角時(shí),求函數(shù)y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案