將極坐標(biāo)方程化為直角坐標(biāo)方程是________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知圓C的極坐標(biāo)方程為ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)將極坐標(biāo)方程化為普通方程,并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(2)若點(diǎn)P(x,y)在圓C上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,且在兩種坐標(biāo)系中取相同的長度單位.已知圓C的圓心的極坐標(biāo)C(1,
π
2
)
,半徑r=1,直線l的參數(shù)方程為
x=1+
2
2
t
y=2+
2
2
t
(t為參數(shù)).
(1)求圓的極坐標(biāo)方程,并將極坐標(biāo)方程化成直角坐標(biāo)方程;
(2)將直線l的參數(shù)方程化為普通方程,并判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省高三教學(xué)質(zhì)量監(jiān)測理科數(shù)學(xué)卷 題型:解答題

(選修4—4:坐標(biāo)系與參數(shù)方程)設(shè)直角坐標(biāo)系的原點(diǎn)與極坐標(biāo)系的極點(diǎn)重合,軸正半軸與極軸重合。已知圓C的極坐標(biāo)方程:

(I)將極坐標(biāo)方程化為普通方程。

(II)若點(diǎn)在圓C上,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆吉林長春市高二第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

⊙O1和⊙O2的極坐標(biāo)方程分別為,

⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

⑵求經(jīng)過⊙O1,⊙O2交點(diǎn)的直線的直角坐標(biāo)方程.

【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運(yùn)用

(1)中,借助于公式,,將極坐標(biāo)方程化為普通方程即可。

(2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

解:以極點(diǎn)為原點(diǎn),極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.

(I),,由.所以

為⊙O1的直角坐標(biāo)方程.

同理為⊙O2的直角坐標(biāo)方程.

(II)解法一:由解得

即⊙O1,⊙O2交于點(diǎn)(0,0)和(2,-2).過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x.

解法二: 由,兩式相減得-4x-4y=0,即過交點(diǎn)的直線的直角坐標(biāo)方程為y=-x

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆海南省嘉積中學(xué)高三教學(xué)質(zhì)量監(jiān)測理科數(shù)學(xué)卷 題型:解答題

(選修4—4:坐標(biāo)系與參數(shù)方程)設(shè)直角坐標(biāo)系的原點(diǎn)與極坐標(biāo)系的極點(diǎn)重合,軸正半軸與極軸重合。已知圓C的極坐標(biāo)方程:
(I)將極坐標(biāo)方程化為普通方程。
(II)若點(diǎn)在圓C上,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案