在一次數(shù)學測驗后,班級學委對選答題的選題情況進行了統(tǒng)計,如下表:
| 幾何證明選講 | 坐標系與 參數(shù)方程 | 不等式選講 | 合計 |
男同學(人數(shù)) | 12 | 4 | 6 | 22 |
女同學(人數(shù)) | 0 | 8 | 12 | 20 |
合計 | 12 | 12 | 18 | 42 |
| 幾何類 | 代數(shù)類 | 總計 |
男同學(人數(shù)) | 16 | 6 | 22 |
女同學(人數(shù)) | 8 | 12 | 20 |
總計 | 24 | 18 | 42 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中數(shù)學 來源: 題型:解答題
甲乙丙丁4人玩?zhèn)髑蛴螒,持球者將球等可能的傳給其他3人,若球首先從甲傳出,經(jīng)過3次傳球.
(1)求球恰好回到甲手中的概率;
(2)設乙獲球(獲得其他游戲者傳的球)的次數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一批產(chǎn)品需要進行質量檢驗,檢驗方案是:先從這批產(chǎn)品中任取4件作檢驗,這4件產(chǎn)品中優(yōu)質品的件數(shù)記為n.如果n=3,再從這批產(chǎn)品中任取4件作檢驗,若都為優(yōu)質品,則這批產(chǎn)品通過檢驗;如果n=4,再從這批產(chǎn)品中任取1件作檢驗,若為優(yōu)質品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗.
假設這批產(chǎn)品的優(yōu)質品率為50%,即取出的每件產(chǎn)品是優(yōu)質品的概率都為,且各件產(chǎn)品是否為優(yōu)質品相互獨立.
(1)求這批產(chǎn)品通過檢驗的概率;
(2)已知每件產(chǎn)品的檢驗費用為100元,且抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質量檢驗所需的費用記為X(單位:元),求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲乙二人用4張撲克牌(分別是紅桃2,紅桃3,紅桃4,方片4)玩游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
(1)設,表示甲乙抽到的牌的數(shù)字,如甲抽到紅桃2,乙抽到紅桃3,記為,,寫出甲乙二人抽到的牌的所有情況;
(2)若甲抽到紅桃3,則乙抽出的牌面數(shù)字比3大的概率是多少?
(3)甲乙約定,若甲抽到的牌的牌面數(shù)字比乙大,則甲勝;否則,乙勝,你認為此游戲是否公平?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲、乙兩名教師進行乒乓球比賽,采用七局四勝制(先勝四局者獲勝).若每一局比賽甲獲勝的概率為,乙獲勝的概率為,現(xiàn)已賽完兩局,乙暫時以2∶0領先.
(1)求甲獲得這次比賽勝利的概率;
(2)設比賽結束時比賽的局數(shù)為隨機變量X,求隨機變量X的概率分布和數(shù)學期望EX.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某學校的三個學生社團的人數(shù)分布如下表(每名學生只能參加一個社團):
| 圍棋社 | 舞蹈社 | 拳擊社 |
男生 | 5 | 10 | 28 |
女生 | 15 | 30 | m |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在一個盒子中,放有標號分別為1,2,3的三個小球.現(xiàn)從這個盒子中,有放回地先后抽得兩個小球的標號分別為x,y,設O為坐標原點,M的坐標為(x-2,x-y).
(1)求||2的所有取值之和;
(2)求事件“||2取得最大值”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和B在任意時刻發(fā)生故障的概率分別為和p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求p的值;
(2)設系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個盒子里裝有7張卡片,其中有紅色卡片4張,編號分別為1,2,3,4;白色卡片3張,編號分別為2,3,4.從盒子中任取4張卡片(假設取到任何一張卡片的可能性相同).
(1)求取出的4張卡片中,含有編號為3的卡片的概率;
(2)在取出的4張卡片中,紅色卡片編號的最大值設為X,求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com