甲、乙兩名教師進(jìn)行乒乓球比賽,采用七局四勝制(先勝四局者獲勝).若每一局比賽甲獲勝的概率為,乙獲勝的概率為,現(xiàn)已賽完兩局,乙暫時(shí)以2∶0領(lǐng)先.
(1)求甲獲得這次比賽勝利的概率;
(2)設(shè)比賽結(jié)束時(shí)比賽的局?jǐn)?shù)為隨機(jī)變量X,求隨機(jī)變量X的概率分布和數(shù)學(xué)期望EX.

(1) 甲獲得這次比賽勝利的概率為;(2) X的概率分布為:

X
4
5
6
7
P
?
?
?
?

解析試題分析:(1)甲獲得這次比賽勝利情況有二,一是比賽六局結(jié)束,甲連續(xù)贏了四局,一是比賽了七局,甲在后五局中贏了四局,且最后一局是甲贏,顯然這兩種情況彼此互斥,故分別計(jì)算出這兩個(gè)事件的概率,求其和即得甲獲得這次比賽勝利的概率.(2)設(shè)比賽結(jié)束時(shí)比賽的局?jǐn)?shù)為,由題意得隨機(jī)變量可能的取值為4,5,6,7,分別求出隨機(jī)變量的概率,從而得分布列和數(shù)學(xué)期望.本題考查次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生次的概率,解題的關(guān)鍵是正確理解兩個(gè)事件、“甲獲得這次比賽勝利”,再由概率的計(jì)算公式計(jì)算出概率.本題是概率中的有一定綜合性的題,對(duì)事件正確理解與分類是很關(guān)鍵.
試題解析:(1)設(shè)甲獲勝為事件A,則甲獲勝包括甲以4∶2獲勝和甲以4∶3獲勝兩種情況.
設(shè)甲以4∶2獲勝為事件A1,則      2分
設(shè)甲以4∶3獲勝為事件A2,則   5分
P(A)=.         6分
(2)隨機(jī)變量可能的取值為4,5,6,7,
=.
.
.
.
X的概率分布為:

X
4
5
6
7
P
?
?
?
?
       12分
考點(diǎn):離散型隨機(jī)變量及其分布列;相互獨(dú)立事件的概率乘法公式;離散型隨機(jī)變量的期望與方差.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商店儲(chǔ)存的50個(gè)燈泡中,甲廠生產(chǎn)的燈泡占60%,乙廠生產(chǎn)的燈泡占40%,甲廠生產(chǎn)的燈泡的一等品率是90%,乙廠生產(chǎn)的燈泡的一等品率是80%.
(1)若從這50個(gè)燈泡中隨機(jī)抽取出1個(gè)燈泡(每個(gè)燈泡被取出的機(jī)會(huì)均等),則它是甲廠生產(chǎn)的一等品的概率是多少?
(2)若從這50個(gè)燈泡中隨機(jī)抽取出2個(gè)燈泡(每個(gè)燈泡被取出的機(jī)會(huì)均等),這2個(gè)燈泡中是甲廠生產(chǎn)的一等品的個(gè)數(shù)記為ξ,求E(ξ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在一次數(shù)學(xué)測(cè)驗(yàn)后,班級(jí)學(xué)委對(duì)選答題的選題情況進(jìn)行了統(tǒng)計(jì),如下表:

 
幾何證明選講
坐標(biāo)系與
參數(shù)方程
不等式選講
合計(jì)
男同學(xué)(人數(shù))
12
4
6
22
女同學(xué)(人數(shù))
0
8
12
20
合計(jì)
12
12
18
42
(1)在統(tǒng)計(jì)結(jié)果中,如果把幾何證明選講和坐標(biāo)系與參數(shù)方程稱為幾何類,把不等式選講稱為代數(shù)類,我們可以得到如下2×2列聯(lián)表:
 
幾何類
代數(shù)類
總計(jì)
男同學(xué)(人數(shù))
16
6
22
女同學(xué)(人數(shù))
8
12
20
總計(jì)
24
18
42
據(jù)此統(tǒng)計(jì)你是否認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān)?若有關(guān),你有多大的把握?
(2)在原統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選做題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知這名班級(jí)學(xué)委和兩名數(shù)學(xué)科代表都在選做“不等式選講”的同學(xué)中.
①求在這名班級(jí)學(xué)委被選中的條件下,兩名數(shù)學(xué)科代表也被選中的概率;
②記抽到數(shù)學(xué)科代表的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表僅供參考:
P(K2k0)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.072
2.706
3.841
5.024
6.635
7.879
10.828
參考公式:K2 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為備戰(zhàn)2016年奧運(yùn)會(huì),甲、乙兩位射擊選手進(jìn)行了強(qiáng)化訓(xùn)練.現(xiàn)分別從他們的強(qiáng)化訓(xùn)練期間的若干次平均成績(jī)中隨機(jī)抽取8次,記錄如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)畫(huà)出甲、乙兩位選手成績(jī)的莖葉圖;
(2)現(xiàn)要從中選派一人參加奧運(yùn)會(huì)封閉集訓(xùn),從統(tǒng)計(jì)學(xué)角度,你認(rèn)為派哪位選手參加合理?簡(jiǎn)單說(shuō)明理由;
(3)若將頻率視為概率,對(duì)選手乙在今后的三次比賽成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)中不低于8.5分的次數(shù)為ξ,求ξ的分布列及均值E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績(jī)合格時(shí),才可繼續(xù)參加科目B的考試.已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績(jī)均合格方可獲得證書(shū).現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績(jī)合格的概率均為,科目B每次考試成績(jī)合格的概率均為.假設(shè)各次考試成績(jī)合格與否均互不影響.
(1)求他不需要補(bǔ)考就可獲得證書(shū)的概率;
(2)在這項(xiàng)考試過(guò)程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為,求 的分布列及數(shù)學(xué)期望E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某牛奶廠要將一批牛奶用汽車(chē)從所在城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由廠商承擔(dān).若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬(wàn)元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬(wàn)元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬(wàn)元.為保證牛奶新鮮度,汽車(chē)只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送牛奶,已知下表內(nèi)的信息:

統(tǒng)計(jì)信息
汽車(chē)行駛路線
在不堵車(chē)的情況下到達(dá)城市乙所需時(shí)間(天)
在堵車(chē)的情況下到達(dá)城市乙所需時(shí)間(天)
堵車(chē)的概率
運(yùn)費(fèi)(萬(wàn)元)
公路1
2
3

1.6
公路2
1
4

0.8
(I)記汽車(chē)選擇公路1運(yùn)送牛奶時(shí)牛奶廠獲得的毛收入為(單位:萬(wàn)元),求的分布列和數(shù)學(xué)期望;
(II)如果你是牛奶廠的決策者,你選擇哪條公路運(yùn)送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷售商支付給牛奶廠的費(fèi)用-運(yùn)費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

生產(chǎn)A,B兩種元件,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為
次品,現(xiàn)隨機(jī)抽取這兩種元件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)





元件A
8
12
40
32
8
元件B
7
18
40
29
6
(Ⅰ)試分別估計(jì)元件A、元件B為正品的概率;
(Ⅱ)生產(chǎn)一件元件A,若是正品可盈利50元,若是次品則虧損10元;生產(chǎn)一件元件B,若是正品可盈利100元,若是次品則虧損20元,在(Ⅰ)的前提下;
(i)求生產(chǎn)5件元件B所獲得的利潤(rùn)不少于300元的概率;
(ii)記X為生產(chǎn)1件元件A和1件元件B所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司招聘員工采取兩次考試(筆試)的方法:第一試考選擇題,共10道題(均為四選一題型),每題10分,共100分;第二試考解答題,共3題。規(guī)則是:只有在一試中達(dá)到或超過(guò)80分者才獲通過(guò)并有資格參加二試,參加二試的人只有答對(duì)2題或3題才能被錄用。現(xiàn)有甲、乙兩人參加該公司的招聘考試。且已知在一試時(shí):兩人均會(huì)做10道題中的6道;對(duì)于另外4道題來(lái)說(shuō),甲有兩題可排除兩個(gè)錯(cuò)誤答案、有兩題完全要猜,乙有兩題可排除一個(gè)錯(cuò)誤答案、有一題可排除兩個(gè)錯(cuò)誤答案、有一題完全要猜。進(jìn)入二試后,對(duì)于任意一題,甲答對(duì)的概率是、乙答對(duì)的概率是.(1)分別求甲、乙兩人能通過(guò)一試進(jìn)入二試的概率;(2)求甲、乙兩人都能被錄用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為貫徹“激情工作,快樂(lè)生活”的理念,某單位在工作之余舉行趣味知識(shí)有獎(jiǎng)競(jìng)賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選題答題的機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止其初賽的比賽,答對(duì)3題者直接進(jìn)入決賽,答錯(cuò)3題者則被淘汰.已知選手甲答題的正確率為.
(1)求選手甲答題次數(shù)不超過(guò)4次可進(jìn)入決賽的概率;
(2)設(shè)選手甲在初賽中答題的個(gè)數(shù)為X,試寫(xiě)出X的分布列,并求X的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案