【題目】已知函數(shù)f(x)=x2﹣2lnx.
(1)求證:f(x)在(1,+∞)上單調(diào)遞增.
(2)若f(x)≥2tx﹣ 在x∈(0,1]內(nèi)恒成立,求實(shí)數(shù)t的取值范圍.
【答案】
(1)解:證明:函數(shù)的定義域?yàn)椋?,+∞),f′(x)=2x﹣ = ,
由f′(x)>0,得x>1,由f′(x)<0,得0<x<1,
所以,函數(shù)f(x)在區(qū)間(1,+∞)上單調(diào)遞增
(2)解:由f(x)≥2tx﹣ 對(duì)x∈(0,1]恒成立,得2t≤x+ ﹣ .
令h(x)=x+ ﹣ ,則h′(x)= ,
因?yàn)閤∈(0,1],所以x4﹣3<0,﹣2x2<0,
2x2lnx<0,x4>0,
所以h′(x)<0,
所以h(x)在(0,1)上為減函數(shù).
所以當(dāng)x=1時(shí),h(x)=h(x)=x+ ﹣ ,有最小值2,得2t≤2,
所以t≤1,故t的取值范圍是(﹣∞,1]
【解析】(1)先求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出,(2)要求若f(x)≥2tx﹣ 在x∈(0,1]內(nèi)恒成立,即轉(zhuǎn)化為2t≤x+ ﹣ 在x∈(0,1]內(nèi)恒成立,只需求h(x)=x+ ﹣ x∈(0,1]內(nèi)的最小值即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f'(x)<1(x∈R),則不等式f(x)>x+1的解集為( )
A.(1,+∞)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,該幾何體是由一個(gè)直三棱柱和一個(gè)正四棱錐組合而成,,.
(1)證明:平面平面;
(2)求正四棱錐的高,使得該四棱錐的體積是三棱錐體積的4倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos2 + sinωx﹣ (ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒(méi)有零點(diǎn),則ω的取值范圍是( )
A.(0, ]
B.(0, ]∪[ , )
C.(0, ]
D.(0, ]∪[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) +cos2x+a(a∈R,a為常數(shù)). (Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)若 時(shí),f(x)的最小值為﹣2,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”、“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如圖所示:
等級(jí) | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | 24 |
(Ⅰ)求, , 的值;
(Ⅱ)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人這任選4人,記所選4人的量化總分為,求的分布列及數(shù)學(xué)期望;
(Ⅲ)某評(píng)估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來(lái)評(píng)估該校安全教育活動(dòng)的成效.若,則認(rèn)定教育活動(dòng)是有效的;否則認(rèn)定教育活動(dòng)無(wú)效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以為頂點(diǎn)的多面體中, 平面, 平面, .
(1)請(qǐng)?jiān)趫D中作出平面,使得,且,并說(shuō)明理由;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)≥ ,則f(x)< + 的解集為( )
A.{x|x<1}
B.{x|x>1}
C.{x|x<﹣1}
D.{x|x>﹣1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且.
(1)證明:sinAsinB=sinC;
(2)若,求tanB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com