【題目】如圖,四棱錐S-ABCD的底面是邊長為1的正方形,則棱SB垂直于底面.
(1)求證:平面SBD⊥平面SAC;
(2)若SA與平面SCD所成角的正弦值為,求SB的長.
【答案】(1)證明見解析;(2) 2或.
【解析】
(1)連結(jié)AC,BD,證明AC⊥BD,AC⊥SB,得出AC⊥面SBD,即可證明平面SAC⊥平面SBD;
(2)將四棱錐補成正四棱柱ABCD-A′SC′D′,連結(jié)A′D,作AE⊥A′D于E,連結(jié)SE,
證明AE⊥面SCD,得出∠ASE為SA與平面SCD所成角的平面角,利用直角三角形的邊角關(guān)系求出SB的長.
(1)證明:連結(jié)AC,BD,如圖所示;
∵四邊形ABCD是正方形,∴AC⊥BD,
∵SB⊥底面ABCD,∴AC⊥SB,
∴AC⊥面SBD,
又由AC面SAC,∴面SAC⊥面SBD.
(2)解:將四棱錐補成正四棱柱ABCD-A′SC′D′,
連結(jié)A′D,作AE⊥A′D于E,連結(jié)SE,如圖所示;
由SA′∥CD,知平面SCD即為平面SCDA′,
∵CD⊥側(cè)面ADD′A′,∴CD⊥AE,
又AE⊥A′D,∴AE⊥面SCD,
∴∠ASE即為SA與平面SCD所成角的平面角,
設SB=x,
在直角△ABS中,由勾股定理得SA=;
在直角△SAE中,=,得AE=;
在直角△DAA′中,A′DAE=ADAA′,
即=1x;
解得x=2或x=;
∴SB的長為2或.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,,是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,證明直線與軸相交于定點;
(Ⅲ)在(Ⅱ)的條件下,過點的直線與橢圓交于,兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】上海市普通高中學業(yè)水平等級考成績共分為五等十一級,各等級換算成分數(shù)如表所示:
等級 | A | B | C | D | E | ||||||
分數(shù) | 70 | 67 | 64 | 61 | 58 | 55 | 52 | 49 | 46 | 43 | 40 |
上海某高中2018屆高三班選考物理學業(yè)水平等級考的學生中,有5人取得成績,其他人的成績至少是B級及以上,平均分是64分,這個班級選考物理學業(yè)水平等級考的人數(shù)至少為______人
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行優(yōu)惠促銷,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種:方案一:每滿200元減50元;方案二:每滿200元可抽獎一次.具體規(guī)則是依次從裝有3個紅球、1個白球的甲箱,裝2個紅球、2個白球的乙箱,以及裝有1個紅球、3個白球的丙箱中各隨機摸出1個球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
(1)若兩個顧客都選擇方案二,各抽獎一次,求至少一個人獲得優(yōu)惠的概率;
(2)若某顧客選擇方案二,請分別計算該顧客獲得半價優(yōu)惠的概率、7折優(yōu)惠的概率以及8折優(yōu)惠的概率;
(3)若小明的購物金額為320元,你覺得小明應該選取哪個方案,為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的長軸長為,右頂點到左焦點的距離為,直線l:與橢圓交于A,B兩點.
求橢圓的方程;
若A為橢圓的上項點,M為AB中點,O為坐標原點,連接OM并延長交橢圓于N,,求k的值.
若原點O到直線l的距離為1,,當時,求的面積S的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 的兩條漸近線與拋物線的準線分別交于,兩點.若雙曲線的離心率為,的面積為,為坐標原點,則拋物線的焦點坐標為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱臺中,底面是邊長為的等邊三角形,上、下底面的面積之比為,側(cè)面底面,并且.
(1)平面平面,證明:;
(2)求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的是( )
A.若數(shù)列、的極限都存在,且,則數(shù)列的極限存在
B.若數(shù)列、的極限都不存在,則數(shù)列的極限也不存在
C.若數(shù)列、的極限都存在,則數(shù)列、的極限也存在
D.數(shù),若數(shù)列的極限存在,則數(shù)列的極限也存在
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com