【題目】下列命題正確的是( )
A.若數(shù)列、的極限都存在,且,則數(shù)列的極限存在
B.若數(shù)列、的極限都不存在,則數(shù)列的極限也不存在
C.若數(shù)列、的極限都存在,則數(shù)列、的極限也存在
D.數(shù),若數(shù)列的極限存在,則數(shù)列的極限也存在
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S-ABCD的底面是邊長為1的正方形,則棱SB垂直于底面.
(1)求證:平面SBD⊥平面SAC;
(2)若SA與平面SCD所成角的正弦值為,求SB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:方程x2+y2﹣4x+m2=0表示圓:q:方程1(m>0)表示焦點在y軸上的橢圓.
(1)若p為真命題,求實數(shù)m的取值范圍;
(2)若命題p、q有且僅有一個為真,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于, 兩點.
(1)求圓的直角坐標方程及弦的長;
(2)動點在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的前項和為,,公差為.
(1)若,求數(shù)列的通項公式;
(2)是否存在,使成立?若存在,試找出所有滿足條件的,的值,并求出數(shù)列的通項公式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】4個不同的紅球和6個不同的白球放入同一個袋中,現(xiàn)從中取出4個球.
(1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少不同的取法?
(2)取出一個紅球記2分,取出一個白球記1分,若取出4個球所得總分不少于5分,則有多少種不同取法.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】艾滋病是一種危害性極大的傳染病,由感染艾滋病病毒病毒引起,它把人體免疫系統(tǒng)中最重要的CD4T淋巴細胞作為主要攻擊目標,使人體喪失免疫功能下表是近八年來我國艾滋病病毒感染人數(shù)統(tǒng)計表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
感染者人數(shù)單位:萬人 | 85 |
請根據該統(tǒng)計表,畫出這八年我國艾滋病病毒感染人數(shù)的折線圖;
請用相關系數(shù)說明:能用線性回歸模型擬合y與x的關系;
建立y關于x的回歸方程系數(shù)精確到,預測2019年我國艾滋病病毒感染人數(shù).
參考數(shù)據:;,,,
參考公式:相關系數(shù),
回歸方程中, ,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解一款電冰箱的使用時間和市民對這款電冰箱的購買意愿,研究人員對該款電冰箱進行了相應的抽樣調查,得到數(shù)據的統(tǒng)計圖表如下:
購買意愿市民年齡 | 不愿意購買該款電冰箱 | 愿意購買該款電冰箱 | 總計 |
40歲以上 | 600 | 800 | |
40歲以下 | 400 | ||
總計 | 800 |
(1)根據圖中的數(shù)據,估計該款電冰箱使用時間的中位數(shù);
(2)完善表中數(shù)據,并據此判斷是否有的把握認為“愿意購買該款電冰箱“與“市民年齡”有關;
(3)用頻率估計概率,若在該電冰箱的生產線上隨機抽取3臺,記其中使用時間不低于4年的電冰箱的臺數(shù)為,求的期望.
附:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com