【題目】已知函數(shù)a為常數(shù))和k為常數(shù)),有以下命題:①當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn);②當(dāng)時(shí),若恰有3個(gè)不同的零點(diǎn),則;③對(duì)任意的,總存在實(shí)數(shù),使得4個(gè)不同的零點(diǎn),且成等比數(shù)列.其中的真命題是_____(寫(xiě)出所有真命題的序號(hào))

【答案】

【解析】

①根據(jù)題意,將函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題,轉(zhuǎn)換為對(duì)應(yīng)函數(shù)圖像的交點(diǎn)個(gè)數(shù)問(wèn)題,分別判斷兩種情況下,函數(shù)零點(diǎn)的個(gè)數(shù)情況,即可判斷出結(jié)果;

②根據(jù)題意,先令,畫(huà)出函數(shù)的圖像,結(jié)合函數(shù)零點(diǎn)個(gè)數(shù)以及函數(shù)圖像,判斷方程根的分布情況,以及方程根的個(gè)數(shù)情況,即可判斷出結(jié)果;

③根據(jù)題意,只需判斷出時(shí),函數(shù)零點(diǎn)個(gè)數(shù)不一定是個(gè),即可得出結(jié)果.

①因?yàn)?/span>,,由得,函數(shù)的零點(diǎn),即是函數(shù)圖像與直線交點(diǎn)的橫坐標(biāo),

當(dāng)時(shí),恒成立,因?yàn)?/span>,所以時(shí),函數(shù)顯然沒(méi)有零點(diǎn);

當(dāng)時(shí),由,即,即

因?yàn)?/span>,所以恒成立,若時(shí),函數(shù)可能有零點(diǎn);若,函數(shù)沒(méi)有零點(diǎn);故①錯(cuò);

②當(dāng)時(shí),因?yàn)?/span>恰有個(gè)不同零點(diǎn),令,則關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)解,記作,不妨令;

做出函數(shù)的圖像如下:

由圖像可得:當(dāng)時(shí),個(gè)交點(diǎn);

當(dāng)時(shí),個(gè)交點(diǎn);

因?yàn)楹瘮?shù)恰有個(gè)不同零點(diǎn),

個(gè)根,記作;個(gè)根,記作(不妨令);

所以只需,因此,

所以;,因此;故②正確;

③由,得;

所以函數(shù)圖像交點(diǎn)個(gè)數(shù),即為函數(shù)的零點(diǎn)個(gè)數(shù);

由②中圖像可知:當(dāng)時(shí),上有個(gè)交點(diǎn),即函數(shù)上有個(gè)零點(diǎn);

當(dāng)時(shí),若,則函數(shù)上單調(diào)遞增,因此函數(shù)上最多只有個(gè)交點(diǎn),即函數(shù)上最多只有個(gè)零點(diǎn);不滿足存在實(shí)數(shù),使得4個(gè)不同的零點(diǎn);

,由基本不等式可得:,即時(shí),;

,則函數(shù)上最多只有個(gè)交點(diǎn),也不滿足對(duì)任意的,總存在實(shí)數(shù),使得4個(gè)不同的零點(diǎn).故③錯(cuò).

故答案為:②.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】人口平均預(yù)期壽命是綜合反映人們健康水平的基本指標(biāo).年第六次全國(guó)人口普查資料表明,隨著我國(guó)社會(huì)經(jīng)濟(jì)的快速發(fā)展,人民生活水平的不斷提高以及醫(yī)療衛(wèi)生保障體系的逐步完善,我國(guó)人口平均預(yù)期壽命繼續(xù)延長(zhǎng),國(guó)民整體健康水平有較大幅度的提高.下圖體現(xiàn)了我國(guó)平均預(yù)期壽命變化情況,依據(jù)此圖,下列結(jié)論錯(cuò)誤的是(

A.男性的平均預(yù)期壽命逐漸延長(zhǎng)

B.女性的平均預(yù)期壽命逐漸延長(zhǎng)

C.男性的平均預(yù)期壽命延長(zhǎng)幅度略高于女性

D.女性的平均預(yù)期壽命延長(zhǎng)幅度略高于男性

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)x[1e]時(shí),fx)的最小值為_____;設(shè)gx)=[fx]2fx+a若函數(shù)gx)有6個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著新高考改革的不斷深入,高中學(xué)生生涯規(guī)劃越來(lái)越受到社會(huì)的關(guān)注.一些高中已經(jīng)開(kāi)始嘗試開(kāi)設(shè)學(xué)生生涯規(guī)劃選修課程,并取得了一定的成果.如表為某高中為了調(diào)查學(xué)生成績(jī)與選修生涯規(guī)劃課程的關(guān)系,隨機(jī)抽取50名學(xué)生的統(tǒng)計(jì)數(shù)據(jù).

成績(jī)優(yōu)秀

成績(jī)不夠優(yōu)秀

總計(jì)

選修生涯規(guī)劃課

15

10

25

不選修生涯規(guī)劃課

6

19

25

總計(jì)

21

29

50

1)根據(jù)列聯(lián)表運(yùn)用獨(dú)立性檢驗(yàn)的思想方法能否有99%的把握認(rèn)為“學(xué)生的成績(jī)是否優(yōu)秀與選修生涯規(guī)劃課有關(guān)”,并說(shuō)明理由;

2)現(xiàn)用分層抽樣的方法在選修生涯規(guī)劃課的成績(jī)優(yōu)秀和成績(jī)不夠優(yōu)秀的學(xué)生中隨機(jī)抽取5名學(xué)生作為代表,從5名學(xué)生代表中再任選2名學(xué)生繼續(xù)調(diào)查,求這2名學(xué)生成績(jī)至少有1人優(yōu)秀的概率.

參考附表:

PK2k

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

參考公式,其中na+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著新高考改革的不斷深入,高中學(xué)生生涯規(guī)劃越來(lái)越受到社會(huì)的關(guān)注.一些高中已經(jīng)開(kāi)始嘗試開(kāi)設(shè)學(xué)生生涯規(guī)劃選修課程,并取得了一定的成果.下表為某高中為了調(diào)查學(xué)生成績(jī)與選修生涯規(guī)劃課程的關(guān)系,隨機(jī)抽取50名學(xué)生的統(tǒng)計(jì)數(shù)據(jù).

成績(jī)優(yōu)秀

成績(jī)不夠優(yōu)秀

總計(jì)

選修生涯規(guī)劃課

15

10

25

不選修生涯規(guī)劃課

6

19

25

總計(jì)

21

29

50

(Ⅰ)根據(jù)列聯(lián)表運(yùn)用獨(dú)立性檢驗(yàn)的思想方法能否有的把握認(rèn)為“學(xué)生的成績(jī)是否優(yōu)秀與選修生涯規(guī)劃課有關(guān)”,并說(shuō)明理由;

(Ⅱ)如果從全校選修生涯規(guī)劃課的學(xué)生中隨機(jī)地抽取3名學(xué)生,求抽到成績(jī)不夠優(yōu)秀的學(xué)生人數(shù)的分布列和數(shù)學(xué)期望(將頻率當(dāng)作概率計(jì)算).

參考附表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),已知方程為常數(shù))在上恰有三個(gè)根,分別為,下述四個(gè)結(jié)論:

①當(dāng)時(shí),的取值范圍是;

②當(dāng)時(shí),上恰有2個(gè)極小值點(diǎn)和1個(gè)極大值點(diǎn);

③當(dāng)時(shí),上單調(diào)遞增;

④當(dāng)時(shí),的取值范圍為,且

其中正確的結(jié)論個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線)上的兩個(gè)動(dòng)點(diǎn),焦點(diǎn)為F.線段AB的中點(diǎn)為,且A,B兩點(diǎn)到拋物線的焦點(diǎn)F的距離之和為8.


1)求拋物線的標(biāo)準(zhǔn)方程;

2)若線段AB的垂直平分線與x軸交于點(diǎn)C,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}滿足:a11,且當(dāng)nN*時(shí),an3+an2(1an+1)+1an+1

1)求a2,a3的值;

2)比較anan+1的大小,并證明你的結(jié)論.

3)若bn=(1),其中nN*,證明:0b1+b2+……+bn2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnxsinx+axa0).

1)若a1,求證:當(dāng)x1,)時(shí),fx)<2x1;

2)若fx)在(02π)上有且僅有1個(gè)極值點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案