11.已知橢圓方程$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,雙曲線的焦點是橢圓的頂點,頂點是橢圓的焦點,則雙曲線的離心率為2.

分析 由橢圓的性質(zhì)結(jié)合已知條件得雙曲線的焦點是F1(-2,0),F(xiàn)2(2,0),頂點是A1(-1,0),A2(1,0),由此能求出雙曲線的離心率.

解答 解:∵橢圓方程$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,雙曲線的焦點是橢圓的頂點,頂點是橢圓的焦點,
∴雙曲線的焦點是F1(-2,0),F(xiàn)2(2,0),頂點是A1(-1,0),A2(1,0),
設(shè)雙曲線方程為$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1,解得a=1,b=$\sqrt{3}$,c=2,
∴雙曲線的離心率e=$\frac{c}{a}$=2.
故答案為:2.

點評 本題考查雙曲線的離心率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意雙曲線、橢圓的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知等比數(shù)列{an}的首項a1=1,且a2、a4、a3成等差,則數(shù)列{an}的公比q=1或-$\frac{1}{2}$,數(shù)列{an}的前4項和S4=4或$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)隨機變量ξ的概率密度為p(x)=$\left\{\begin{array}{l}{\frac{1}{10}{e}^{-\frac{x}{10}},x>0}\\{0,x≤0}\end{array}\right.$則E(2ξ+1)=( 。
A.$\frac{7}{5}$B.41C.21D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)左焦點的直線與它的兩個交點及其右焦點構(gòu)成周長為16的三角形,此橢圓的離心率為0.5,求這個橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow a$=(m,0}),向量$\overrightarrow b,\overrightarrow c$滿足$\overrightarrow a$⊥$\overrightarrow{b$,$\overrightarrow c$-$\overrightarrow a$=2$\overrightarrow b$,且|$\overrightarrow c$|=$\sqrt{10}$,若$\overrightarrow c$與$\overrightarrow a$+$\overrightarrow b$夾角的余弦值為$\frac{{3\sqrt{10}}}{10}$,則|$\overrightarrow b$|=( 。
A.$\sqrt{2}$B.$\frac{5}{4}$C.$\frac{5}{4}$或2D.$\sqrt{2}$或$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}的前n項和Sn滿足:2Sn=3an-6n(n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)$b{\;}_n=\frac{a_n}{λ^n}$,其中常數(shù)λ>0,若數(shù)列{bn}為遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=x2+b,g(x)=ax+aln(x-1),若存在實數(shù)a(a≥1),使y=f(x),y=g(x)的圖象無公共點,則實數(shù)b的取值范圍是( 。
A.[-1,0]B.(-$\frac{3}{4}$-ln2,1]C.(-$\frac{3}{4}$-ln2,+∞)D.(-∞,-$\frac{3}{4}$-ln2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=x3-3x2+2的極大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an},a1=1,a2=3,an+2=an+1-an,則a2016=-2.

查看答案和解析>>

同步練習(xí)冊答案