【題目】銷售甲、乙兩種商品所得利潤(rùn)分別是P(萬(wàn)元)和Q(萬(wàn)元),它們與投入資金t(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式P=3 ,Q=t.今將3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,其中對(duì)甲種商品投資x(萬(wàn)元).求:
(1)經(jīng)營(yíng)甲、乙兩種商品的總利潤(rùn)y(萬(wàn)元)關(guān)于x的函數(shù)表達(dá)式;
(2)怎樣將資金分配給甲、乙兩種商品,能使得總利潤(rùn)y達(dá)到最大值,最大值是多少?

【答案】
(1)解:根據(jù)題意,得 ,x∈[0,3]
(2)解:

∈[0,3],∴當(dāng) = 時(shí),即x= ,3﹣x= 時(shí),

即給甲、乙兩種商品分別投資 萬(wàn)元、 萬(wàn)元可使總利潤(rùn)達(dá)到最大值 萬(wàn)元


【解析】(1)利潤(rùn)函數(shù)為y=甲商品所得的利潤(rùn)P+乙商品所得的利潤(rùn) ,其中定義域?yàn)閤∈[0,3];(2) .由二次函數(shù)的性質(zhì),得函數(shù)的最大值以及對(duì)應(yīng)的x值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會(huì)影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無(wú)雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為

(1)求及基地的預(yù)期收益;

(2)若該基地額外聘請(qǐng)工人,可在周一當(dāng)天完成全部采摘任務(wù),若周一無(wú)雨時(shí)收益為萬(wàn)元,有雨時(shí)收益為萬(wàn)元,且額外聘請(qǐng)工人的成本為元,問(wèn)該基地是否應(yīng)該額外聘請(qǐng)工人,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= 則不等式f(x)>f(1)的解集是(
A.(﹣3,1)∪(3,+∞)
B.(﹣3,1)∪(2,+∞)
C.(﹣1,1)∪(3,+∞)
D.(﹣∞,﹣3)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),離心率為.

1)求橢圓的方程;

2)直線過(guò)橢圓的左焦點(diǎn),且與橢圓交于兩點(diǎn),若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線),焦點(diǎn)到準(zhǔn)線的距離為,過(guò)點(diǎn)作直線交拋物線于點(diǎn)(點(diǎn)在第一象限).

()若點(diǎn)焦點(diǎn)重合,且弦長(zhǎng),求直線的方程;

()若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線x軸于點(diǎn),且,求證:點(diǎn)B的坐標(biāo)是,并求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=﹣x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大理石工廠初期花費(fèi)98萬(wàn)元購(gòu)買磨大理石刀具,第一年需要各種費(fèi)用12萬(wàn)元,從第二年起,每年所需費(fèi)用比上一年增加4萬(wàn)元,該大理石加工廠每年總收入50萬(wàn)元.

(1)到第幾年末總利潤(rùn)最大,最大值是多少?

(2)到第幾年末年平均利潤(rùn)最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)舉行一個(gè)比賽類型的娛樂(lè)節(jié)目, 兩隊(duì)各有六名選手參賽,將他們首輪的比賽成績(jī)作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊(duì)第六位選手的成績(jī)沒(méi)有給出,并且告知大家隊(duì)的平均分比隊(duì)的平均分多4分,同時(shí)規(guī)定如果某位選手的成績(jī)不少于21分,則獲得“晉級(jí)”.

(1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊(duì)第六位選手的成績(jī);

(2)主持人從隊(duì)所有選手成績(jī)中隨機(jī)抽2個(gè),求至少有一個(gè)為“晉級(jí)”的概率;

(3)主持人從兩隊(duì)所有選手成績(jī)分別隨機(jī)抽取2個(gè),記抽取到“晉級(jí)”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案