14.關(guān)于函數(shù)f(x)=(x2-2x)ex,有以下命題:
①不等式f(x)<0的解集是{x|0<x<2};  
②$f(-\sqrt{2})$是極大值,$f(\sqrt{2})$是極小值;
③f(x)有最小值,沒(méi)有最大值;  
④f(x)有3個(gè)零點(diǎn).
其中正確的命題個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 令f(x)<0可解x的范圍確定①正確;對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),然后令f'(x)=0求出x,根據(jù)f'(x)的正負(fù)判斷原函數(shù)的單調(diào)性,求出函數(shù)的極值進(jìn)而可確定②正確;根據(jù)函數(shù)的單調(diào)性可判斷函數(shù)的取值范圍判斷③正確,解方程判斷④不正確,從而得到答案.

解答 解:由f(x)<0⇒(x2-2x)ex<0⇒x2-2x<0⇒0<x<2,
故①正確;
f′(x)=ex(x2-2),由f′(x)=0得x=±$\sqrt{2}$,
由f′(x)>0得x>$\sqrt{2}$或x<-$\sqrt{2}$,由f′(x)<0得-$\sqrt{2}$<x<$\sqrt{2}$,
∴f(x)的單調(diào)增區(qū)間為(-∞,-$\sqrt{2}$),($\sqrt{2}$,+∞).單調(diào)減區(qū)間為(-$\sqrt{2}$,$\sqrt{2}$).
∴f(x)的極小值為f($\sqrt{2}$),極大值為f(-$\sqrt{2}$),故②正確;
而f($\sqrt{2}$)=(2-2$\sqrt{2}$)${e}^{\sqrt{2}}$<0,f(-$\sqrt{2}$)=(2+2$\sqrt{2}$)${e}^{-\sqrt{2}}$>0,
x>2時(shí),f(x)>0恒成立,x<0時(shí),f(x)>0恒成立,x→-∞時(shí),f(x)→0,
∴f(x)沒(méi)有最大值,有最小值,最小值是f($\sqrt{2}$),∴③正確,
令f(x)=0,解得:x=0或x=2,f(x)有2個(gè)零點(diǎn),④不正確.
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)的極值與其導(dǎo)函數(shù)關(guān)系,即函數(shù)取到極值時(shí)導(dǎo)函數(shù)一定等于0,但導(dǎo)函數(shù)等于0時(shí)還要判斷原函數(shù)的單調(diào)性才能確定原函數(shù)的極值點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若AB為定圓O一條弦(非直徑),AB=4,點(diǎn)N在線段AB上移動(dòng),∠ONF=90°,NF與圓O相交于點(diǎn)F,求NF的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,AB是圓O的直徑,AC是弦,∠BAC的平分線AD交圓O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E,OE交AD于點(diǎn)F.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)若$\frac{AC}{AB}$=$\frac{2}{5}$,求$\frac{AF}{DF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,E為BC的中點(diǎn),AB=1,AD=2,PA=2.
(1)證明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,△ABC的外接圓為⊙O,延長(zhǎng)CB至Q,再延長(zhǎng)QA至P,使得QC2-QA2=BA•QC.
(1)求證:QA為⊙O的切線;
(2)若AC恰好為∠BAP的平分線,AB=6,AC=12,求QA的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在極坐標(biāo)系中,點(diǎn)P(2,$\frac{11π}{6}$)到直線ρsin(θ-$\frac{π}{6}$)=1的距離等于(  )
A.1B.2C.3D.$1+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖所示,在一個(gè)坡度一定的山坡AC的頂上有一高度為25m的建筑物CD.為了測(cè)量該山坡相對(duì)于水平地面的坡角θ,在山坡的A處測(cè)得∠DAC=15°,沿山坡前進(jìn)25m到達(dá)B處,又測(cè)得∠DBC=45°.根據(jù)以上數(shù)據(jù)計(jì)算可得cosθ=$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=lnx-2x3與g(x)=2x3-ax,若f(x)的圖象上存在點(diǎn)A滿足它關(guān)于y軸的對(duì)稱(chēng)點(diǎn)B落在g(x)的圖象上,則實(shí)數(shù)a的取值范圍是a≤$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知直線l:x+y=1在矩陣$A=[\begin{array}{l}m,n\\ 0,1\end{array}]$對(duì)應(yīng)的變換作用下變?yōu)橹本l':x-y=1,求矩陣A.

查看答案和解析>>

同步練習(xí)冊(cè)答案