A. | $\sqrt{2}$ | B. | $\sqrt{2}$+1 | C. | $\sqrt{5}$ | D. | $\sqrt{5}$-1 |
分析 根據(jù)拋物線的方程算出其焦點(diǎn)為F($\frac{p}{2}$,0),得到|MF|=p.設(shè)雙曲線的另一個焦點(diǎn)為F',由雙曲線的右焦點(diǎn)為F算出雙曲線的焦距|FF'|=p,△TFF'中利用勾股定理算出|MF'|=$\sqrt{2}$p,再由雙曲線的定義算出2a=($\sqrt{2}$-1)p,利用雙曲線的離心率公式加以計(jì)算,可得答案.
解答 解:拋物線y2=2px的焦點(diǎn)為F($\frac{p}{2}$,0),
由MF與x軸垂直,令x=$\frac{p}{2}$,可得|MF|=p,
雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的實(shí)半軸為a,半焦距c,另一個焦點(diǎn)為F',
由拋物線y2=2px的焦點(diǎn)F與雙曲線的右焦點(diǎn)重合,
即c=$\frac{p}{2}$,可得雙曲線的焦距|FF'|=2c=p,
由于△MFF'為直角三角形,則|MF'|=$\sqrt{2}$p,
根據(jù)雙曲線的定義,得2a=|MF'|-|MF|=$\sqrt{2}$p-p,
可得a=$\frac{\sqrt{2}-1}{2}$p.
因此,該雙曲線的離心率e=$\frac{c}{a}$=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}$+1.
故選:B.
點(diǎn)評 本題給出共焦點(diǎn)的雙曲線與拋物線,它們的交點(diǎn)在x軸上射影恰好為拋物線的焦點(diǎn)時(shí),求雙曲線的離心率.著重考查了拋物線和雙曲線的定義與標(biāo)準(zhǔn)方程、簡單幾何性質(zhì)等知識,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({1,\sqrt{2}})$ | B. | $({1,\sqrt{2}}]$ | C. | $({\sqrt{2},+∞})$ | D. | $[{\sqrt{2},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\sqrt{5}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | 3 | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com