(Ⅰ)寫(xiě)出雙曲線(xiàn)C的離心率與的關(guān)系式;
(Ⅱ)當(dāng)時(shí),經(jīng)過(guò)焦點(diǎn)F且平行于OP的直線(xiàn)交雙曲線(xiàn)于A、B點(diǎn),若,求此時(shí)的雙曲線(xiàn)方程。
(22)本小題主要考查直線(xiàn)方程、雙曲線(xiàn)的幾何性質(zhì)等基本知識(shí),考查綜合運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力及推理能力.
(Ⅰ)解法1:設(shè)為與雙曲線(xiàn)右準(zhǔn)線(xiàn)的交點(diǎn),則
.
即
解法2:設(shè)為PM與雙曲線(xiàn)右準(zhǔn)線(xiàn)的交點(diǎn),N為左準(zhǔn)線(xiàn)與x軸的交點(diǎn),F(xiàn)(c,0),P(),由于P()在雙曲線(xiàn)右支上,則
①
②
由|PF|=得
③
由①、②代入③得
再將c=ea,b=a代入上式,得
化簡(jiǎn),得
④
由題意,點(diǎn)P位于雙曲線(xiàn)右支上,從而
|PM|>|M|.
于是解得e=2,
從而c=2a,b=
由此得雙曲線(xiàn)的方程是
.
下面確定a的值。
解法1:
設(shè)雙曲線(xiàn)左準(zhǔn)線(xiàn)與x軸的交點(diǎn)為N,P點(diǎn)的坐標(biāo)為(),則
|ON|=
|MN|=
由于P()在雙曲線(xiàn)的右支上,且位于x軸上方,因而
所以直線(xiàn)OP的斜率為。
設(shè)過(guò)焦點(diǎn)F且平行于OP的直線(xiàn)與雙曲線(xiàn)的交點(diǎn)為A()、B(),則直線(xiàn)AB的斜率為,直線(xiàn)AB的方程為
將其代入雙曲線(xiàn)方程整理得
∵
∴ |AB|=
由|AB|=12得a=1.于是,所求雙曲線(xiàn)的方程為
解法2:由條件OFPM為菱形,其對(duì)角線(xiàn)OP與FM互相垂直平分,其交點(diǎn)Q為OP的中點(diǎn)。
設(shè)OP的方程為則FM的方程為
由解得Q點(diǎn)的坐標(biāo)為(),
所以P點(diǎn)的坐標(biāo)為().
將P點(diǎn)的坐標(biāo)代入雙曲線(xiàn)方程,化簡(jiǎn)得
解得
設(shè)過(guò)焦點(diǎn)F且平行于OP的直線(xiàn)與雙曲線(xiàn)的交點(diǎn)為、,則直線(xiàn)AB的斜率為,直線(xiàn)AB的方程為
將其代入雙曲線(xiàn)方程,整理得
∵
∴
由|AB|=12得a=1.于是,所求雙曲線(xiàn)的方程為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
PF |
OF |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
FB |
FA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(Ⅰ)寫(xiě)出雙曲線(xiàn)C的離心率e與的關(guān)系式:
(Ⅱ)寫(xiě)=1時(shí),經(jīng)過(guò)焦點(diǎn)F且平行于OP的直線(xiàn)交雙曲線(xiàn)于A、B兩點(diǎn),若|AB|=12,求此時(shí)的雙曲線(xiàn)方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com