【題目】定義函數(shù)(0,)為型函數(shù),共中

(1)若型函數(shù),求函數(shù)的值域;

(2)若型函數(shù),求函數(shù)極值點個數(shù);

(3)若型函數(shù),在上有三點A、B、C橫坐標分別為、,其中,試判斷直線AB的斜率與直線BC的斜率的大小并說明理由.

【答案】1;(21個;(3)見解析.

【解析】

1)先對函數(shù)求導求出其單調(diào)性,結(jié)合端點值求出值域;(2)先求導令導數(shù)等于0,求極值點個數(shù)只需判斷導數(shù)零點的個數(shù),化簡整理后得,將導數(shù)零點轉(zhuǎn)化為兩個函數(shù)的交點問題,利用圖像觀察求出交點個數(shù);(3)先求導再進行二階求導,利用二階導數(shù)研究一階導數(shù)的單調(diào)性與范圍,再得出原函數(shù)的單調(diào)性,因為二階導數(shù)小于0,所以函數(shù)是三凸的單調(diào)遞減函數(shù),結(jié)合函數(shù)圖像很容易得出兩直線斜率的關(guān)系.

解:(1)因為,

所以

時,,單調(diào)遞增

時,,單調(diào)遞減

又因為,

所以函數(shù)的值域為

2)因為,

所以

時,

結(jié)合函數(shù)圖像易知上有且只有一個交點

,時,

時,,

時,,

且當時,

時,,函數(shù)單調(diào)遞增

時,,函數(shù)單調(diào)遞減

所以函數(shù)只有一個極大值點,極值點個數(shù)為1

3)因為

所以

所以

所以上單調(diào)遞減,且,所以

構(gòu)造函數(shù),

,

時,,單調(diào)遞增

時,,單調(diào)遞減

又因為,所以,所以

所以上單調(diào)遞減

因為

所以

所以

所以直線AB的斜率大于直線BC的斜率

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在其圖象上存在不同的兩點,,其坐標滿足條件: 的最大值為0,則稱為“柯西函數(shù)”,則下列函數(shù):① :②:③:④.

其中為“柯西函數(shù)”的個數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合.

(1)若的充分條件,求的取值范圍.

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于直線和點,記,若,則稱點,被直線l分隔,若曲線C與直線l沒有公共點,且曲線C上存在點,被直線l分隔,則稱直線l為曲線C的一條分隔線.

1)求證:點被直線分隔;

2)若直線是曲線的分隔線,求實數(shù)的取值范圍;

3)動點M到點的距離與到y軸的距離之積為1,設(shè)點M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】目前用外賣網(wǎng)點餐的人越來越多.現(xiàn)對大眾等餐所需時間情況進行隨機調(diào)查,并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖).其中等餐所需時間的范圍是,樣本數(shù)據(jù)分組為, ,,

(1)求直方圖中的值;

(2)某同學在某外賣網(wǎng)點了一份披薩,試估計他等餐時間不多于小時的概率;

(3)現(xiàn)有名學生都分別通過外賣網(wǎng)進行了點餐,這名學生中等餐所需時間少于小時的人數(shù)記為,求的分布列和數(shù)學期望.(以直方圖中的頻率作為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點到點的距離與點到直線的距離相等.

1)求點的軌跡方程;

2)設(shè)點的軌跡為曲線,過點且斜率為1的直線與曲線相交于不同的兩點,為坐標原點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個頂點為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點M,N.

(1)求橢圓C的方程;

(2)當△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓經(jīng)過點,且點到橢圓的兩焦點的距離之和為.

(l)求橢圓的標準方程;

(2)若是橢圓上的兩個點,線段的中垂線的斜率為且直線交于點,為坐標原點,求證:三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,曲線由部分橢圓和部分拋物線連接而成,的公共點為,其中所在橢圓的離心率為.

(Ⅰ)求,的值;

(Ⅱ)過點的直線,分別交于點,,,,中任意兩點均不重合),若,求直線的方程.

查看答案和解析>>

同步練習冊答案