【題目】已知點(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離相等.

1)求點(diǎn)的軌跡方程;

2)設(shè)點(diǎn)的軌跡為曲線,過點(diǎn)且斜率為1的直線與曲線相交于不同的兩點(diǎn),,為坐標(biāo)原點(diǎn),求的面積.

【答案】1;(2

【解析】

1)由拋物線的定義可知點(diǎn)的軌跡是以為焦點(diǎn)的拋物線,即可求解.

2)由點(diǎn)斜式求出直線方程,聯(lián)立直線與拋物線方程,消元,利用韋達(dá)定理即可求得三角形的面積.

解:(1)設(shè)

∵動(dòng)點(diǎn)到點(diǎn)的距離與到定直線的距離相等,

∴點(diǎn)到點(diǎn)的距離等于到直線的距離,

由拋物線定義得:點(diǎn)的軌跡是以為焦點(diǎn)、直線為準(zhǔn)線的拋物線.

設(shè)拋物線方程為,可得:

.

∴拋物線的方程為,即為點(diǎn)的軌跡方程.

2)由直線的斜率為1

可得直線的方程為,即.

聯(lián)立,消去,整理得.

設(shè),,則,

因此的面積:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的范圍;

(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),設(shè),對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),,使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, ,其中是自然常數(shù), .

(1)當(dāng)時(shí),求的極值,并證明恒成立;

(2)是否存在實(shí)數(shù),使的最小值為 ?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選出了三個(gè)科目作為選考科目.若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.某學(xué)校為了了解高一年級(jí)200名學(xué)生選考科目的意向,隨機(jī)選取20名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學(xué)

生物

歷史

地理

政治

男生

選考方案確定的有5

5

5

2

1

2

0

選考方案待確定的有7

6

4

3

2

4

2

女生

選考方案確定的有6

3

5

2

3

3

2

選考方案待確定的有2

1

2

1

0

1

1

(1)在選考方案確定的男生中,同時(shí)選考物理、化學(xué)、生物的人數(shù)有多少?

(2)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù),(0,)為型函數(shù),共中

(1)若型函數(shù),求函數(shù)的值域;

(2)若型函數(shù),求函數(shù)極值點(diǎn)個(gè)數(shù);

(3)若型函數(shù),在上有三點(diǎn)A、B、C橫坐標(biāo)分別為、,其中,試判斷直線AB的斜率與直線BC的斜率的大小并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2019年的自主招生筆試成績(jī)(滿分200分)中,隨機(jī)抽取100名考生的成績(jī),按此成績(jī)分成五組,得到如下的頻率分布表:

組號(hào)

分組

頻數(shù)

頻率

第一組

15

第二組

25

0.25

第三組

30

0.3

第四組

第五組

10

0.1

1)求頻率分布表中,的值;

2)估計(jì)筆試成績(jī)的平均數(shù)及中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(精確到0.1

3)若從第四組、第五組的學(xué)生中按組用分層抽樣的方法抽取6名學(xué)生參加面試,用簡(jiǎn)單隨機(jī)抽樣方法從6人中抽取2人作為正、副小組長(zhǎng),求抽取的2人為同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線ly=2x+2,若l與橢圓 的交點(diǎn)為A,B,點(diǎn)P為橢圓上的動(dòng)點(diǎn),則使△PAB的面積為 的點(diǎn)P的個(gè)數(shù)為(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是菱形,ACBD=O,△PAC是邊長(zhǎng)為2的等邊三角形,

1)求四棱錐P-ABCD的體積VP-ABCD;

2)在線段PB上是否存在一點(diǎn)M,使得CM∥平面BDF?如果存在,求的值,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面命題正確的是(

A.”是“”的 充 分不 必 要條件

B.命題“若,則”的 否 定 是“ 存 在,則”.

C.設(shè),則“”是“”的必要而不充分條件

D.設(shè),則“”是“”的必要 不 充 分 條件

查看答案和解析>>

同步練習(xí)冊(cè)答案